

Современное состояние и перспективы развития систем РЗА в ЕЭС России

Жуков Андрей Васильевич Заместитель директора по управлению режимами ЕЭС

5-я Международная научно-техническая конференция «Современные направления развития систем релейной защиты и автоматики энергосистем»

1 – 4 июня 2015, г. Сочи

Объект управления - Единая энергетическая система России

- 69 региональных энергосистем, 7 объединенных энергетических систем
- параллельно с ЕЭС России работают ЭС 12 государств (Беларуси, Украины, Казахстана, Латвии, Литвы, Эстонии, Азербайджана, Грузии, Узбекистана, Киргизии, Молдавии и Монголии); через ВПТ осуществляется работа с ЭС Финляндии и Китая
- протяженность линий электропередачи 110 кВ и выше около 500 тыс. км
- электростанций установленной мощностью свыше 5 МВт более 680
- структура выработки электроэнергии:
 ТЭС 60,6%, ГЭС 16,3%, АЭС 17,6%, эл. станции пром. предприятий 5,5%
- подстанций напряжением 110 750 кВ более 12 тысяч
- установленная мощность электростанций ЕЭС России более 232 тыс. МВт
- годовой максимум потребления ЕЭС России свыше 154 тыс. МВт
- оперативно-диспетчерское управление всеми объектами в составе ЕЭС России на территории 79 субъектов Российской Федерации от Калининграда до Дальнего Востока

Энергетическая стратегия России на период до 2030 года

(утверждена распоряжением Правительства Российской Федерации от 13 ноября 2009 г. № 1715-р)

Энергетическая стратегия России формирует ориентиры развития энергетического сектора страны в рамках перехода российской экономики на инновационный путь развития.

ГЛАВНЫМИ ВЕКТОРАМИ ПЕРСПЕКТИВНОГО РАЗВИТИЯ ОТРАСЛЕЙ ТЭК:

- переход на путь инновационного и энергоэффективного развития;
- изменение структуры и масштабов производства энергоресурсов;
- создание конкурентной рыночной среды;
- интеграция в мировую энергетическую систему.

ПО НАПРАВЛЕНИЮ «ЭЛЕКТРОЭНЕРГЕТИКА» ПРЕДУСМАТРИВАЕТСЯ:

- создание высокоинтегрированных интеллектуальных системообразующих и распределительных электрических сетей нового поколения в Единой энергетической системе России (интеллектуальные сети -Smart Grids);
- создание электрического транзита ультравысокого напряжения постоянного и переменного тока Сибирь -Урал - Европейская часть России;
- использование низкотемпературных сверхпроводниковых индукционных накопителей электрической энергии для электрических сетей и гарантированного электроснабжения ответственных потребителей;
- широкое развитие распределенной генерации;
- развитие силовой электроники и устройств на их основе, прежде всего различного рода сетевых управляемых устройств (гибкие системы передачи переменного тока FACTS);
- создание высокоинтегрированного информационно-управляющего комплекса оперативно-диспетчерского управления в режиме реального времени с экспертно-расчетными системами принятия решений;
- создание высоконадежных магистральных каналов связи между различными уровнями диспетчерского управления и дублированных цифровых каналов обмена информацией между объектами и центрами управления;
- создание и широкое внедрение централизованных систем противоаварийного управления, охватывающих все уровни Единой энергетической системы России и т.д.

Планы перспективного развития ЕЭС России

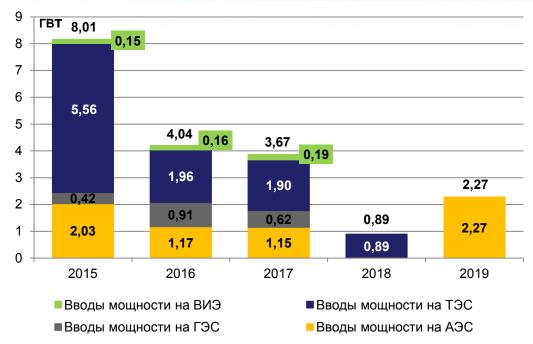
По умеренно-оптимистичному варианту – электропотребление по ЕЭС России за 2015-2021 годы может увеличиться на 9,3%

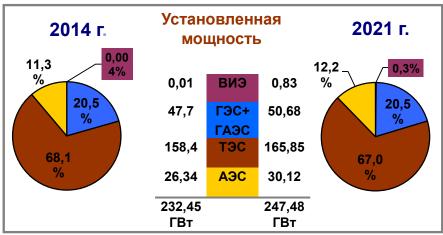
По базовому варианту – электропотребление по ЕЭС России за 2015-2021 годы может увеличиться на 5,9%

По умеренно-оптимистичному варианту – максимума потребления мощности ЕЭС России за 2015-2021 годы может увеличиться на 9,3 %

По базовому варианту – максимума потребления мощности ЕЭС России за 2015-2021 годы может увеличиться на 5,7%

ОСНОВНЫЕ НАПРАВЛЕНИЯ РАЗВИТИЯ ЕЭС РОССИИ ДО 2020 ГОДА:


- Присоединение центрального и западного энергорайонов энергосистемы Республики Саха (Якутия) к ЕЭС России
- Присоединение энергорайона Салехарда к ЕЭС России
- Обеспечение электроснабжения II очереди ВСТО
- Обеспечение выдачи мощности строящихся электростанций (АЭС, ГЭС, ТЭС)
- Обеспечение электроснабжения БАМа и Транссиба при его расширении
- Развитие юго-западного энергорайона Кубанской энергосистемы и Таманского полуострова



Вводы мощности с высокой вероятностью реализации по ЕЭС России за период 2015-2021 годы

Вводы мощности за период 2015-2019 гг., ГВт

Bcero	18,9
АЭС	6,6
ГЭС+ГАЭС	1,5
тэс	10,3
виэ	0,5

ЭНЕРГОБЛОКИ АЭС	
Белоярская АЭС (БН-880, 880 МВт)	2015
Нововоронежская АЭС-2 (ВВЭР-1200, 2×1150 МВт)	2015, 2017
Ленинградская АЭС-2 (ВВЭР-1200, 2×1170 МВт)	2016, 2019
Ростовская АЭС (ВВЭР-1000, 1100 МВт)	2019

Основные вводы электросетевых объектов в период до 2021 года в соответствии с проектом СиПР ЕЭС России на 2015-2021 годы

Наименование электросетевого объекта

Электросетевые объекты 220–750 кВ для выдачи мощности АЭС (Ленинградская АЭС-2, Нововоронежская АЭС-2, Ростовская АЭС-2) и ГЭС (Загорская ГАЭС-2, Нижнебурейская ГЭС)

ВЛ 750 кВ Ленинградская - Белозерская

ВЛ 500 кВ Костромская ГРЭС - Нижегородская

ПС 500 кВ Белобережская с заходами ВЛ 500 кВ Новобрянская - Елецкая

ПС 500 кВ Обнинск с ВЛ 500 кВ Обнинская - Калужская

ВЛ 500 кВ Дорохово - Обнинск, ВЛ 500 кВ Дорохово – Панино, ВЛ 500 кВ Грибово - Дорохово №2

ПП 500 кВ Панино с заходами ВЛ 500 кВ Михайловская -Чагино с отп. и ВЛ 500 кВ Новокаширская-Пахра

ПС 500 кВ Софьино с заходами ВЛ 500 кВ Дорохово-Панино

ПС 500 кВ Каскадная с заходами ВЛ 500 Чагино - Ногинск

ВЛ 500 кВ Кубанская – Тамань с ПС 500 кВ Тамань

ВЛ 500 кВ Ростовская – Тамань, ВЛ 500 кВ Ростовская - Шахты

ВЛ 500 кВ Невинномысск – Моздок (Алания)

ПС 500 кВ Святогор с заходами ВЛ 500 кВ Сургутская ГРЭС-2 -

Магистральная

ПС 500 кВ Преображенская с заходами ВЛ 500 кВ Газовая-Красноармейская

ВЛ 220кВ Нижневартовская ГРЭС-Советско-Соснинская (в габаритах 500 кВ)

ВЛ 500 кВ Восход - Ишим (Витязь)

ПС 500 кВ Восход с заходами ВЛ 500 кВ Барабинская - Таврическая

Перевод на номинальное напряжение 500 кВ ВЛ 220 кВ Витязь(Заря) - Иртыш

ПС 500 кВ Озёрная с ВЛ 500 кВ Братский ПП - Озерная

ПС 500 кВ Усть-Кут с заходом ВЛ 500 кВ Усть-Илимская ГЭС – Якурим на ОРУ 500 кВ ПС 500 кВ Усть-Кут с переводом ВЛ на номинальное напряжение 500 кВ

ВЛ 500 кВ Усть-Кут - Нижнеангарская с ПС 500 кВ Нижнеангарская

ВЛ 500 кВ Алюминиевая - Абаканская - Итатская

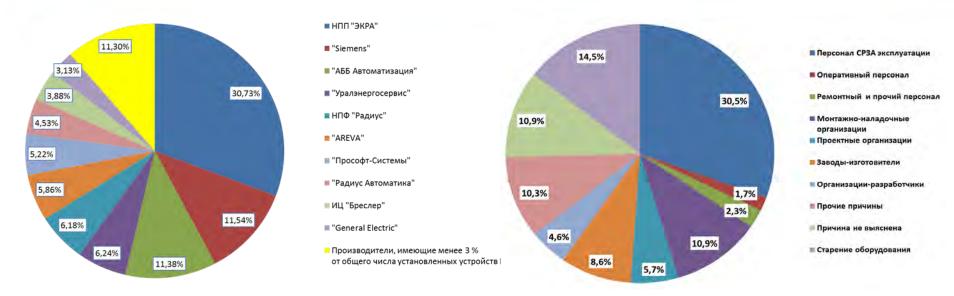
ВЛ 500 кВ Приморская ГРЭС - Хабаровская №2

В период 2015-2021 гг. намечается ввод 25,8 тыс.км ВЛ 220 кВ и выше, в т.ч.:

- 220 кВ 17,7 тыс. км
- 330 кВ и выше 8,1 тыс. км

В период 2015-2021 гг. намечается ввод 87,8 тыс. МВА силового трансформаторного оборудования 220 кВ и выше на подстанциях, в т.ч.:

- 220 кВ 54,4 тыс. МВА
- 330 кВ и выше 33,4 тыс. МВА



Пилотные проекты внедрения управляемых устройств в ЕНЭС

	НАИМЕНОВАНИЕ ПРОЕКТА	место внедрения	ОЖИДАЕМЫЙ ЭФФЕКТ
1	Забайкальский преобразовательный комплекс несинхронной связи ОЭС Сибири и ОЭС Востока (вставка) на базе устройств СТАТКОМ (ВПТН -200)	ПС 220 кВ Могоча	Нормирование уровня U, повышение устойчивости несинхронной параллельной работы, надежное электроснабжение потребителей. Ввод в эксплуатацию – 2015 г.
2	Амурский преобразовательный комплекс несинхронной связи ОЭС Сибири и ОЭС Востока. Вставка постоянного тока	ПС 220 кВ Хани	Нормирование уровня U, повышение устойчивости несинхронной параллельной работы, надежное электроснабжение потребителей. Ввод в эксплуатацию – 2020 г.
3	Вставка несинхронной связи ОЭС Сибири и ОЭС Востока. Вставка постоянного тока	ПС 220 кВ Пеледуй (Олекминск)	Нормирование уровня U, повышение устойчивости несинхронной параллельной работы, надежное электроснабжение потребителей. Ввод в эксплуатацию – 2021 г.

Состояние комплексов РЗА ЛЭП и оборудования 110-750 кВ ЕЭС России

ВНЕДРЯЕМЫЕ В ЕЭС РОССИИ МП РЗА

ВИД ИСПОЛНЕНИЯ		на 01.01.2009 г.		на 01.01.2015 г.	
		110-220	330-750	110-220	330-750
0	РЗ и СА	86%	74%	63,87%	51,0%
Эл.мех.	ПА	46%	53%	41,04%	38,40%
	РЗ и СА	8%	11%	7,51%	10,19%
МЭ	ПА	36%	23%	16,96%	13,94%
МП	РЗ и СА	6%	15%	28,62%	38,81%
	ПА	18%	24%	41,99%	47,67%

ОРГАНИЗАЦИОННЫЕ ПРИЧИНЫ НЕПРАВИЛЬНОЙ РАБОТЫ УСТРОЙСТВ РЗА

Неправильная работа устройства РЗА по вине релейного персонала (36,49 % от общего количества):

- 24,32 % из-за неудовлетворительного состояния устройств;
- 4,95 % непосредственные ошибки при работах;
- 4,05 % неправильные указания по оперативному обслуживанию устройств (комплексов) РЗА;
- 0,9 % дефекты, оставленные после работ;
- 2,25 % недочеты согласования проекта, задания уставок.

Процент правильной работы устройств РЗА сети 330-750 кВ в 2014 году составляет 95,91%

Приведение характеристик генерирующего оборудования Калининградской ТЭЦ-2 требованиям российских НТД

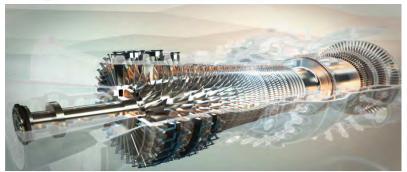
Причиной аварий в Калининградской энергосистеме 13.08.2011, 01.08.2012, 08.08.2013 явилось несоответствие алгоритмов работы технологической автоматики и системы регулирования ГТЭ-160 требованиям российских НТД:

- технологическая автоматика по переводу ГТ из режима регулирования мощности в режим регулирования частоты излишне работает при синхронных качаниях, возникающих после нормативного аварийного возмущения, с разгрузкой ГТ до минимума
- неработоспособность системы регулирования при выделении ГТ на СН

130 FT-10 S0.45 S0.45 S0.35 S0.25 S0

Август 2013 – октябрь 2014 были выполнены следующие мероприятия:

- разработана математическая модель газовой турбины, ее системы регулирования и технологической автоматики
- выполнена настройка системы регулирования, проведены успешные испытания по переводу газовых турбин на работу на СН
- определены новая логика работы технологической автоматики газовых турбин и ее параметры настройки, исключающие излишнюю работу при нормативных возмущениях
- скорректированы настройки блочных регуляторов мощности Калининградской ТЭЦ-2, 28.09.2014 и 12.10.2014
 проведены успешные натурные испытания по проверке работы Бл-2 и Бл-1 (соответственно) при выделении их на изолированную с Калининградской энергосистемой работу


При повторении в энергосистеме возмущений, аналогичных 13.08.2011, 01.08.2012 и 08.08.2013, будет обеспечена корректная работа всех систем регулирования Калининградской ТЭЦ-2

Для исключения ложной работы технологической автоматики при нормативных возмущениях на 25-ти ГТЭ — 160 на 14 электростанциях, работающих в ЕЭС России, организована работа, аналогичная проделанной на Калининградской ТЭЦ-2.

Несоответствие импортных газовых турбин требованиям российских HTД

Требования российских НТД к ПА

АЧР1: частота – 46,5-48,8 Гц; время – 0,15-0,3 с;

ЧДА: частота – 46-47 Гц; время – 0,3-0,5 с;

частота – 47-47,5 Гц; время – 30-40 с

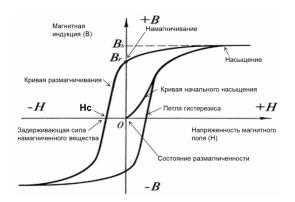
Требования российских НТД к генерирующему оборудованию

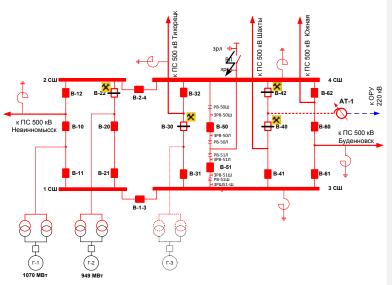
частота – 46-47 Гц; время – 1 с;

частота – 47-47,5 Гц; время – 40 с.

В 2005-2014 гг. в ЕЭС России введено 2500 МВт ПГУ и ГТУ с допустимыми диапазонами работы по частоте, не соответствующими параметрам настройки ПА. Несогласованное действие технологических защит ПГУ, ГТУ и ПА в аварийных ситуациях приводит:

- к отключению ГТ и ПГУ до срабатывания ПА и увеличению дефицита активной мощности;
- снижению эффективности работы ПА;
- увеличению объема отключаемой нагрузки;
- снижению живучести энергосистемы.


Уставки защит импортных ГТ частота – 47-47,5 Гц; время – 0-1 с; частота – 47,5-48 Гц; время – 15-20 с.

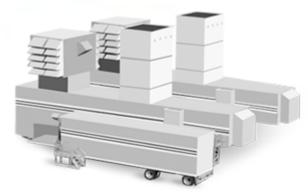

Работа ОАО «СО ЕЭС» с производителями ГТ по приведению их характеристик в соответствие требованиям российских НТД

ГТ, которые приведены в соответствие требованиям	ГТ, которые приводятся в соответствие требованиям	ГТ, которые не соответствуют требованиям
LM6000 PF Sprint, PG6111FA, LMS100PB, PG9171, MS9001FA (PG9351 FA), MS9001FB (General Electric); SGT-800 (Siemens); GT13E2, GT26 (Alstom)	V64.3A (AE64.3A) (Ansaldo Energia); SGT5-4000F (Siemens); ГТЭ-160 (Силовые Машины-Siemens)	V94.2 (Siemens); M701F4 (Mitsubishi)

Расследование причин излишней работы устройств РЗА на РоАЭС 04.11.2014

Причиной излишней работы устройств РЗ явилось насыщение ТТ В-60 и ТТ В-50 при протекании через них в течение 80 мс тока КЗ с большой апериодической составляющей с постоянной времени затухания (Тр) не менее 40 мс

Установлено:

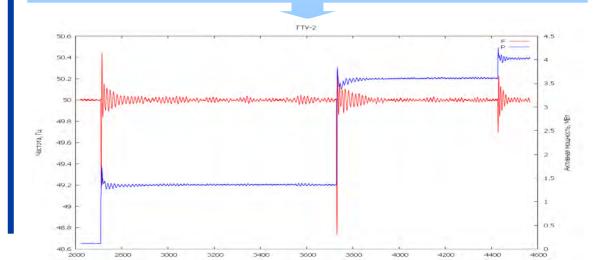

- При проведении в условиях эксплуатации замеров омического сопротивления обмоток и при проверке целостности вторичных токовых цепей ТТ остаточная намагниченность ТТ достигает значений 76%.
- В соответствии с требованиями МЭК 61869-2 (2012) зарубежные производители устройств РЗ указывают требования к переходным характеристикам ТТ, гарантирующих их правильную работу в переходных режимах. В НД РФ аналогичные требования к производителям устройств РЗ отсутствуют.
- В МП защитах отечественных производителей не предусмотрены меры, исключающие возможность неправильной работы при насыщении ТТ, отсутствуют требования к работе ТТ в переходных режимах.

Мероприятия:

- ТК 016 Федерального агентства по техническому регулированию и метрологии приступил к доработке ГОСТ 7746-2001 «Трансформаторы тока. Общие технические условия» в части внесения дополнительных требований к работе ТТ в переходных режимах;
- Перед производителями P3A ставится задача определения технических характеристик TT, гарантирующих правильную работу их устройств P3A в переходных режимах;
- Необходимость разработки методики учета остаточной намагниченности ТТ при определении условий функционирования защит;
- Необходимость применения в эксплуатации устройств проверки параметров ТТ с током, исключающим насыщение ТТ (например, мультиметр FLUKE 117)

Мобильные газотурбинные станции

В целях обеспечения высокого уровня надежности электроснабжения зимних олимпийских и паралимпийских игр в сочи в 2014 году были развернуты девять мобильных газотурбинных электрических станций суммарной мощностью 202,5 МВт.


СИСТЕМЫ РЕГУЛИРОВАНИЯ МГТС БЫЛИ РАССЧИТАНЫ НА РЕЖИМ ПАРАЛЛЕЛЬНОЙ РАБОТЫ С ЭНЕРГОСИСТЕМОЙ. ДЛЯ ИСПОЛЬЗОВАНИЯ МГТС В РЕЖИМЕ РАЗВОРОТА ЭНЕРГОСИСТЕМЫ С «НУЛЯ» И ПИТАНИЯ ИЗОЛИРОВАННОГО РАЙОНА ЭНЕРГОСИСТЕМЫ ФИРМОЙ PW POWER SYSTEMS-CIS БЫЛИ ВНЕСЕНЫ ИЗМЕНЕНИЯ В ЛОГИКУ РАБОТЫ СИСТЕМ РЕГУЛИРОВАНИЯ.

В июле 2014 года проводились испытания Мобильных ГТС по возможности набора нагрузки и регулированию частоты в изолированной энергосистеме. Испытания были неуспешны.

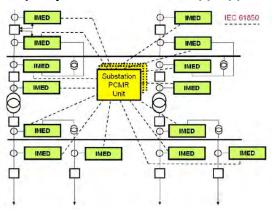
ОАО «Мобильные ГТС» с ОАО «СО ЕЭС» выполнено:

- корректировка логики работы системы регулирования газовых турбин;
- определены параметры системы регулирования (статизм регулирования, мертвая полоса и т.д.), обеспечивающие их устойчивую работу в режиме работы на изолированный энергорайон

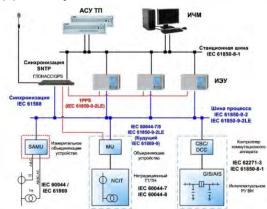
В ноябре 2014 года проведены повторные испытания Мобильных **FTC** возможности набора нагрузки регулированию частоты изолированной энергосистеме. В Испытания признаны успешными.

ЗАДАЧА: РАЗРАБОТКА ЕДИНОЙ ТЕХНИЧЕСКОЙ ПОЛИТИКИ В ОБЛАСТИ РЗА СУБЪЕКТОВ ЭНЕРГЕТИКИ И ПОТРЕБИТЕЛЕЙ ЭЛЕКТРОЭНЕРГИИ ЕЭС РОССИИ

- Разработка концептуальных вопросов развития систем релейной защиты, противоаварийной и режимной автоматики (РЗА), учитывающих перспективы внедрения в ЕЭС России современного силового оборудования и элементов ААС;
- Повышение технического совершенства отечественных комплексов РЗА путем разработки и внедрения интеллектуальных электронных устройств (ИЭУ), базирующихся на достижениях современной цифровой техники и коммуникаций;
- Разработка вопросов надежности функционирования современных устройств и комплексов РЗА;
- Развитие процедур аттестации и сертификации устройств РЗА;
- Развитие системы мониторинга и анализа функционирования устройств и комплексов РЗА;
- Совершенствование нормативно-технической базы систем РЗА;
- Развитие программных комплексов расчетов и выбора параметров настройки устройств РЗА.


Основные направления развития систем РЗА ЕЭС России

- 1. Учет мировых тенденций развития систем РЗА, ориентация на передовые технические решения и идеологию.
- 2. Развитие и модернизация комплексов РЗА на базе внедрения цифровых технологий (ИЭУ РЗА, высокоскоростные цифровые каналы связи, оптические измерительные ТТ и ТН, ЦПС и т. д.).
- 3. Развитие функциональности системы РЗА на новой информационной платформе:
 - применение технологии векторных измерений для задач P3A (WAMS, WAPS и WACS);
 - использование информационной теории РЗА для создания систем и устройств нового поколения;
 - создание адаптивных алгоритмов функционирование устройств РЗ;
 - разработка централизованных защит объектов электроэнергетики;
 - разработка и внедрение устройств РЗА элементов ААС;
 - координированное управление настройками устройств РЗ в режиме реального времени по схемно-режимным условиям работы энергосистемы.
- 4. Разработка современного ПО, обеспечивающего в режиме реального времени:
 - повышение точности моделирования процессов в защищаемом объекте управления;
 - автоматическую актуализацию параметров ЛЭП и оборудования при работе элементов ААС;
 - расчет и выбор параметров настройки устройств РЗ;
 - автоматическую проверку чувствительности и селективности функционирования устройств РЗ при изменяющихся схемнорежимных условиях работы энергосистемы;
 - удаленное параметрирование устройств РЗ и управление отдельными функциями устройств РЗ из ДЦ или ЦУС.
- 5. Решение вопросов надежности функционирования современных комплексов РЗА:
 - типизация технических решений по создаваемым РЗА;
 - кибербезопасность;
 - импортозамещение;
 - система эксплуатации современных устройств и комплексов РЗА;
 - интеграция разрабатываемых технологий в существующую систему РЗА.
- 6. Преемственность основных принципов построения отечественной системы РЗА?
- 7. Сохранение децентрализованного принципа построения системы РЗА?


Развитие технологий «Цифровая подстанция»

Централизованный подход

- **❖** ЦИФРОВАЯ
- **❖** КОМПАКТНАЯ
- **❖** НЕОБСЛУЖИВАЕМАЯ
- **❖** САМОДИАГНОСТИРУЕМАЯ

Децентрализованный подход

Достоинства:

- Снижение количества эксплуатируемых устройств РЗА
- Снижение стоимости за счет виртуализации дорогостоящих физических устройств РЗА в одном ПТК
- Снижение стоимости за счет уменьшения количества каналов связи и телекоммуникационного оборудования при построении информационной сети энергообъекта

Недостатки:

- Отсутствие нормативно-технической базы (требования к разработке, проектированию и эксплуатации)
- Концентрация большого количества функций РЗА в рамках одного программно-технического комплекса (открыт вопрос обеспечения требуемого уровня надежности функционирования)
- Усложнение программного обеспечения устройств РЗА (усложнение ПО приводит к увеличению вероятности возникновения программного сбоя)
- Отсутствуют решения по интеграции в существующую систему РЗА

Достоинства:

- Наличие нормативно-технической базы (серия стандартов МЭК 61850 и т.д.)
- Разнесение функций РЗА в рамках нескольких ИЭУ (отработанные технологии с требуемой надежностью)
- Наличие технологии по интеграции в существующую систему РЗА

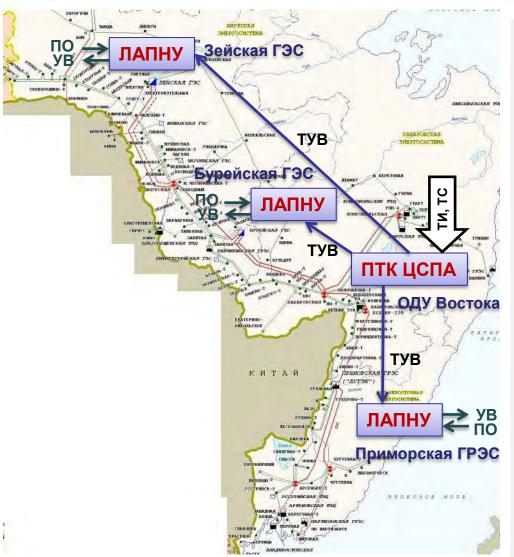
Недостатки:

- Большое количество эксплуатируемых устройств РЗА:
 - Различные функции систем автоматизации энергообъекта реализованы в виде отдельных физических устройств
 - Информационный обмен между отдельными физическими устройствами реализуется на базе стандарта МЭК 61850 с усложнением и увеличение масштаба информационной сети энергообъекта

- ОАО «НТЦ ФСК ЕЭС» Центр «Опытный полигон Цифровая подстанция»
- ОАО «ЧЭАЗ» (ООО «Испытательный центр») Полигон испытаний ПТК АСУТП в режиме «Информационный шторм»
- Пилотный проект в рамках НИОКР ОАО «РусГидро» на Нижегородской ГЭС
- ОАО «НТЦ ЕЭС» испытательный стенд ОАО «НТЦ ЕЭС» (ООО «Энергопромавтоматизация»)
- ФГБОУ ВПО «НИУ МЭИ» «Лаборатория исследования функциональной совместимости устройств, работающих по условиям стандарта МЭК 61850»
- Испытательные стенды у производителей устройств РЗА (ООО НПП «ЭКРА», ООО «ИЦ Бреслер» и т.д.)
- В настоящее время компанией ООО «ТЕКВЕЛ» запущен информационный портал iReg http://61850.in/, на котором приведены данные о результатах проведенных проверок информационной совместимости устройств, поддерживающих передачу данных в протоколах МЭК 61850.

Развитие противоаварийного управления в ЕЭС России

ЦЕЛИ:


- Выявление, предотвращение развития и ликвидация аварийного режима энергосистемы
- Повышение пропускной способности системообразующей сети ЕЭС России
- Повышение эффективности ПА путем внедрения адаптивных алгоритмов управления и обеспечения минимизации управляющих воздействий
- Использование для целей противоаварийного управления ресурсов современных элементов FACTS, ВПТ, ППТ

ТЕКУЩЕЕ СОСТОЯНИЕ ТЕХНИЧЕСКИХ КОМПЛЕКСОВ ПА В ЕЭС РОССИИ:

- В ЕЭС России создана и эффективно функционирует эшелонированная система ПА, обеспечивающая:
 - действие ПА на всех этапах развития аварийного процесса;
 - взаиморезервирование отдельных подсистем ПА;
 - координацию действия ПА с функционированием РЗ и РА;
 - надежность работы энергосистемы (живучесть);
 - адаптивность функционирования и минимизацию ущерба при возникновении аварийных ситуаций.
- Необходима модернизация существующих комплексов ПА с внедрением современных микропроцессорных устройств ПА;
- Современные цифровые средства обработки и доставки информации требуют совершенствования технологических алгоритмов противоаварийного управления;
- Необходима типизация проектных решений по ПА;
- Необходима типизация требований к устройствам и алгоритмам ПА, решение вопросов сертификации устройств ПА.

ЦСПА нового поколения

ОСОБЕННОСТИ ЦСПА НОВОГО ПОКОЛЕНИЯ:

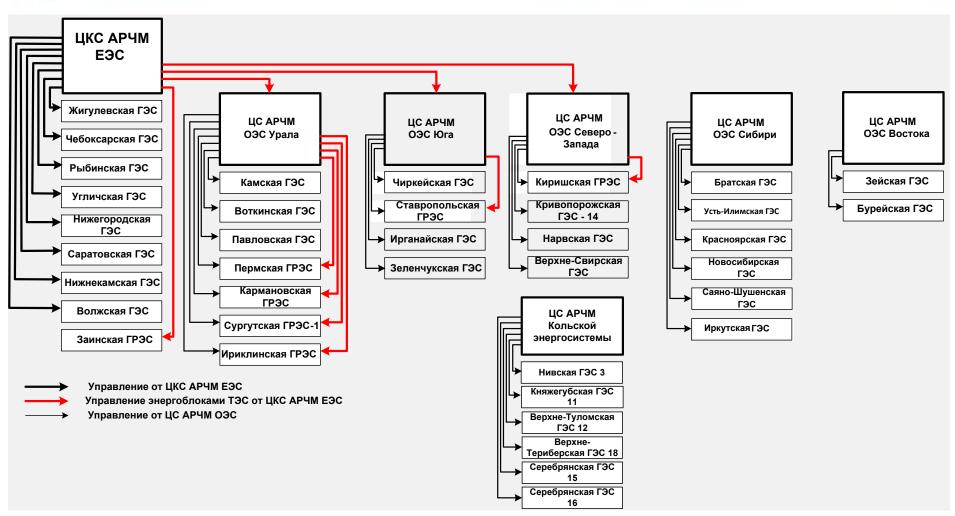
- Разработка алгоритма расчета и ПО выбора управляющих воздействий для обеспечения статической устойчивости с использованием традиционных расчетных методов.
- Разработка алгоритма расчета и ПО выбора управляющих воздействий для обеспечения устойчивости в динамической фазе переходного процесса.
- Разработка алгоритма и ПО оценивания состояния электроэнергетического режима энергосистемы.
- Разработка современной архитектуры ПТК верхнего уровня ЦСПА:
 - новые технологии разработки и внедрения технологического ПО;
 - новая структура базы данных;
 - мультисерверная многопроцессорная система параллельных вычислений;
 - модернизированная система управления вычислительными возможностями ПТК.
- Обеспечение максимальной универсальности (возможности использования ЦСПА в схемах энергосистем любой конфигурации).
- Повышение быстродействия ЦСПА путём перехода на параллельный расчёт пусковых органов.
- Повышение надежности функционирования ЦСПА.

Перевод на ЦСПА

- Разработка пусковых органов ПА на базе устройств векторного измерения параметров электрического режима.
- Использование для реализации управляющих воздействий ЦСПА элементов силовой электроники (FACTS, ВПТ, ППТ).
- Создание ЦСПА третьего поколения ОЭС Северо-Запада (2016).
- Перевод ЦСПА второго поколения ОЭС Средней Волги, Юга, Урала и Тюменской ЭС на платформу ЦСПА третьего поколения (до 2018).

Текущее состояние

- Готовы к участию в ОПРЧ 1524 единиц генерирующего оборудования участников ОРЭМ установленной мощностью 176972 МВт (80,8 % от общей установленной мощности);
- Обеспечена готовность к управлению от ЦС/ЦКС АРЧМ 31-й из 36-ти ГЭС мощностью более 100 МВт;
- В рамках функционирования РСУ для участия в НПРЧ на первое полугодие 2015 года отобраны 61 энергоблок на 19-ти ТЭС и гидроагрегат Красноярской ГЭС. Суммарная установленная мощность генерирующего оборудования НПРЧ составляет 22922 МВт. Суммарный резерв НПРЧ составляет ±1156 МВт. Для участия в АВРЧМ на период паводка отобраны 17 энергоблоков на 5-ти ТЭС. Суммарная установленная мощность энергоблоков АВРЧМ составляет 3863,2 МВт с размещаемым на них вторичным резервом ±193 МВт.


Перспективные задачи

- Подключение к ЦС АРЧМ оставшихся 5-ти ГЭС мощностью более 100 МВт;
- Модификация унифицированного программного обеспечения систем АРЧМ с реализацией возможностей:
 - управления ВПТ от ЦС АРЧМ ОЭС Востока в координации с ЦС АРЧМ ОЭС Сибири;
 - контроля и коррекции суточной выработки ГЭС, подключенных к управлению от регуляторов ЦКС/ЦС АРЧМ;
- Подготовка и выпуск стандартов ОАО «СО ЕЭС» по информационному обеспечению систем АРЧМ и по нормам участия ТЭС с поперечными связями в НПРЧ, национального стандарта по обеспечению согласованной работы ЦС (ЦКС) АРЧМ и автоматики управления мощностью ГЭС, межгосударственного стандарта по регулированию частоты и перетоков активной мощности в энергообъединении стран-участников параллельной работы.

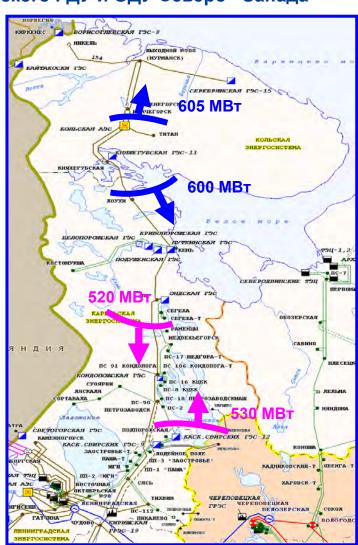
Автоматическое управление электроэнергетическим режимом ЕЭС по частоте и перетокам активной мощности

21

Система мониторинга запасов устойчивости энергосистемы в реальном времени (СМЗУ)

Программный комплекс «Система мониторинга запасов устойчивости энергосистемы в реальном времени» (ПК СМЗУ) находится в опытной эксплуатации Кольского РДУ и ОДУ Северо - Запада

ПК СМЗУ предназначен для:


- Выявления в режиме on-line опасных сечений.
- Расчёта в режиме on-line текущих значений максимальнодопустимых перетоков в выявленных опасных и заданных контролируемых сечениях с учётом:
 - критерия n-1;
 - обеспечения допустимой токовой загрузки электросетевых элементов;
 - обеспечения допустимых уровней напряжения;
 - текущих настроек устройств и комплексов ПА (ЛАПНУ, АОПО, АОСН).

Эффект от внедрения:

- Повышение степени использования пропускной способности электрических сетей энергосистемы;
- Выявление актуальных опасных сечений;
- Обеспечение диспетчера ОДУ/РДУ необходимой информацией для управления установившимся режимом энергосистемы при возникновении схемно-режимных ситуаций, не предусмотренных Положениями по ведению режимов.

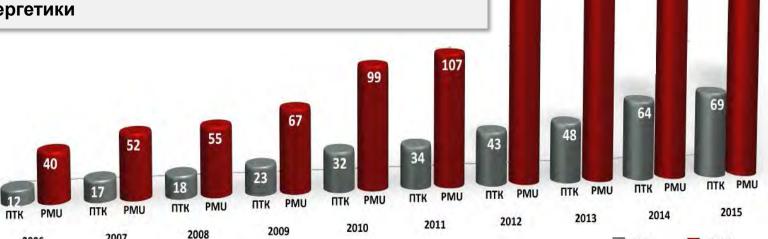
Перспективы развития:

- Определение МДП с учетом критерия сохранения динамической устойчивости.
- Внедрение ПК СМЗУ на транзитах других операционных зон.


363

ПТК

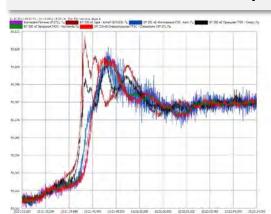
PMU

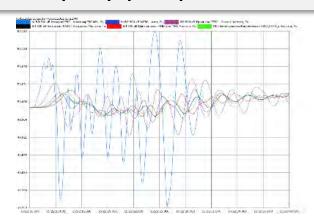

Основные направления развития СМПР в ЕЭС России

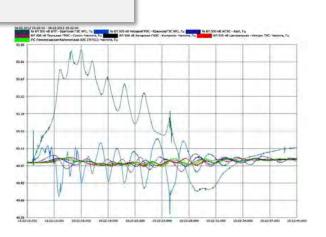
- Создание системы автоматического сбора информации в режимах on- и off-line для задач оперативно-диспетчерского и автоматического управления ЭЭС
- Разработка нормативно-методической базы применения устройств синхронизированных векторных измерений
- Организация работ по проектированию и внедрению ПТК СМПР на энергообъектах
- Развитие технологий оперативно-диспетчерского и автоматического управления ЭЭС на базе векторных измерений
- Сопровождение эксплуатации ПТК СМПР на объектах электроэнергетики

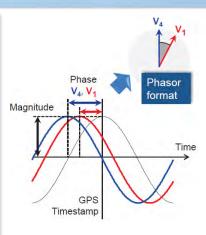
2007

2006

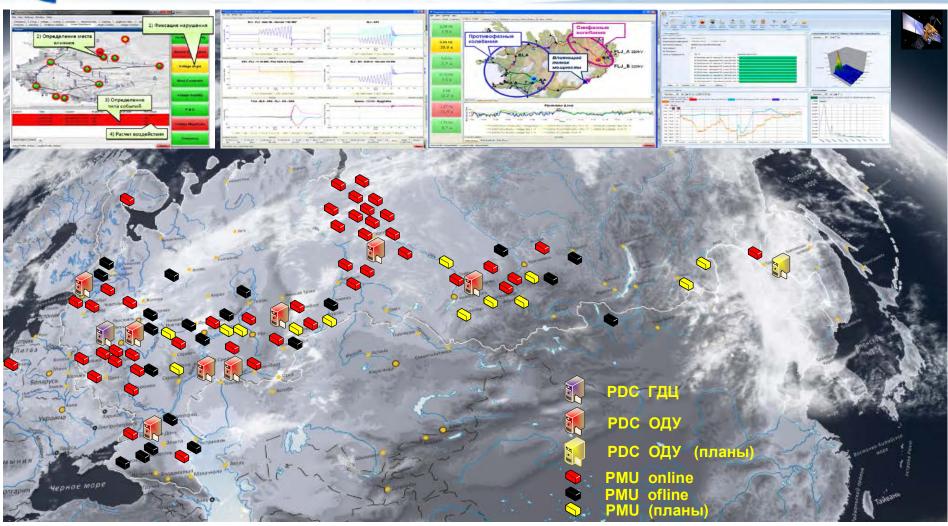

207




Критерии ОАО «СО ЕЭС» по установке регистраторов СМПР на объектах электроэнергетики

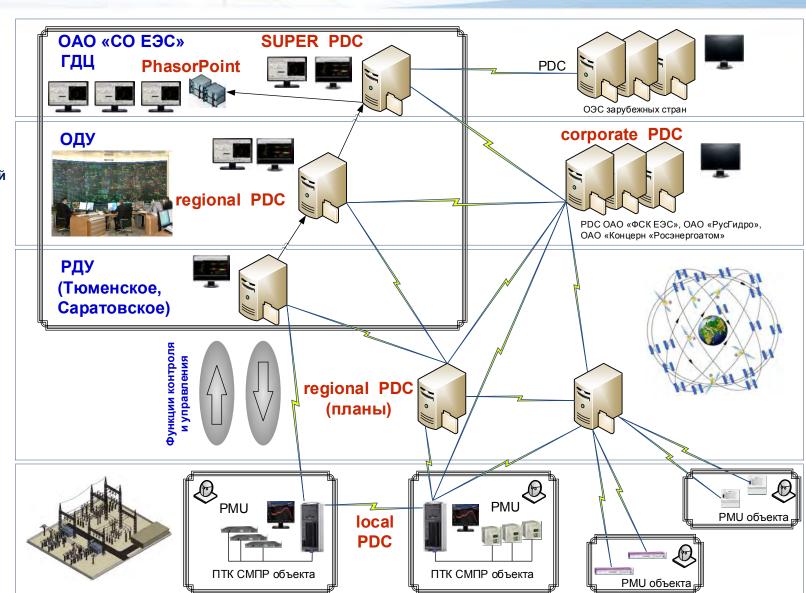

Векторные измерительные преобразователи в составе ПТК СМПР энергообъекта устанавливаются:

- на подстанциях напряжением 500 кВ и более:
- на всех отходящих линиях высшего напряжения.
- на электростанциях установленной мощностью 500 МВт и более:
 - на всех отходящих линиях высшего класса напряжения;
 - на гидроагрегатах мощностью 100 MBт и выше;
 - на турбогенераторах АЭС и ТЭС мощностью 200 МВт и более;
 - на генераторах ПГУ при общей мощности ПГУ 200 МВт и более.
- на межгосударственных линиях электропередачи классом напряжения 220 кВ и выше;
- при мониторинге перетоков активной мощности в контролируемых сечениях, токовой нагрузки ЛЭП, напряжений в узлах электрической сети по требованию ОАО «СО ЕЭС»
 - на отходящих линиях среднего класса напряжения энергообъекта;
 - на высшей стороне автотрансформаторов.



Внедрение УСВИ на объектах электроэнергетики

По состоянию на июнь 2015 года – ПТК СМПР развернуты на 69 объектах электроэнергетики (400 PMU). Планируется к 2020 году – ПТК СМПР развернуть на 200 объектов электроэнергетики (более 1000 PMU).

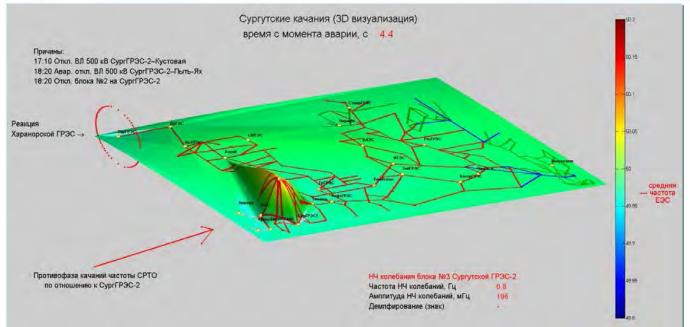

Архитектура построения СМПР в ЕЭС России

уровень главного ДЦ

территориальный уровень


региональный уровень

уровень ЭО 69 объектов 28 PDC 400 PMU


ПО мониторинга низкочастотных колебаний в режиме offline на базе АС СИ СМПР

модального состава НЧК ЕЭС России.

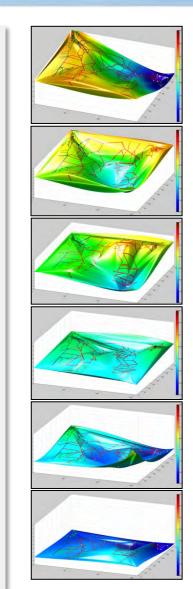
Мониторинг электроэнергетического режима ЕЭС России по данным СМПР

ДИНАМИКА ИЗМЕНЕНИЯ ЧАСТОТЫ В ЕЭС РОССИИ ПРИ ОТКЛЮЧЕНИИ БЛОКА МОЩНОСТЬЮ 800 МВТ НИЖНЕВАРТОВСКОЙ ГРЭС

ЗАДАЧА: ДОВЕДЕНИЕ РАЗРАБОТОК ПО ДО УРОВНЯ ПРОМЫШЛЕННОГО ПРИМЕНЕНИЯ В ДИСПЕТЧЕРСКИХ ЦЕНТРАХ

возможности по:

- определение динамики изменения режимных параметров δ(t), f(t), U(t);
- идентификация технологического возмущения и локализация места возмущения;
- мониторинг максимально-допустимых перетоков по контролируемым сечениям;
- визуальная идентификация локальных и межзональных колебаний, уровня их демпфирования


ОБЛАСТЬ ПРИМЕНЕНИЯ ПО МОНИТОРИНГА:

- глобальный мониторинг уровня частоты в масштабах энергосистемы;
- повторение аварийного события в псевдореальном времени;
- мониторинг разделения энергосистемы на части;
- оценка тяжести по относительному углу напряжения;
- пост-аварийный анализ;
- мониторинг уровней напряжения

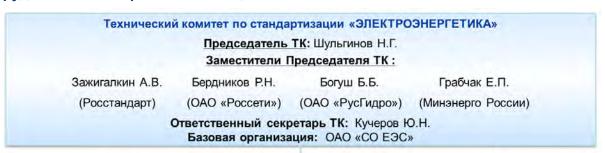
Направления научных исследований в области технологии векторных измерений в системах управления ЕЭС России

- разработка приложений для задач оперативно-диспетчерского управления энергосистемой;
- мониторинг параметров и состояния электротехнического оборудования;
- разработка технических средств синхронизированных измерений угловой скорости генераторов;
- управление режимом работы электропередачи с использованием параметра относительного угла;
- мониторинг колебательной устойчивости энергосистемы;
- управление режимом энергосистемы с целью обеспечения колебательной устойчивости;
- создание пусковых органов и противоаварийной автоматики на базе векторных измерений параметров электрического режима;
- разработка алгоритма идентификации аварийных ситуаций для предотвращения каскадных аварий;
- применение технологии синхронизированных векторных измерений в задачах релейной защиты;
- разработка Стандартов в области СМПР и решение вопросов сертификации РМU и РDC.

Современные вызовы в области стандартизации (примеры технологической несовместимости)

В электроэнергетике остро стоит вопрос комплексного обновления нормативно-технической базы применительно к электроэнергетическим системам, объектам электроэнергетики и линиям электропередачи, соответствующему оборудованию и устройствам

- □ Действующие межгосударственные и национальные стандарты по-разному нормируют условия работы турбинных установок при снижении частоты в энергосистеме (ГОСТ 24278-89, ГОСТ 29328-92, ГОСТ Р 54403-2011, ГОСТ Р 55196-2012)
- в 2005-2014 гг. в ЕЭС России введено более 2500 МВт ПГУ и ГТУ с допустимыми диапазонами работы по частоте, не соответствующими настройке АОСЧ (АЧР и ЧДА)
- Несогласованное действие технологических защит ПГУ, ГТУ и АОСЧ увеличивает дефицит активной мощности, снижает эффективность работы АЧР и снижает живучесть энергосистемы в аварийных ситуациях!
- Не урегулированы вопросы согласования действия технологических защит с допустимыми режимами работы генерирующего оборудования
- в 2011-2013 гг. неустойчивая работа ПГУ Калининградской ТЭЦ-2 привела к авариям с потерей генерации и масштабным отключением потребителей
- Неудовлетворительная работа системы регулирования и технологической автоматики приводит к риску полного погашения Калининградской энергосистемы!
- □ Применение зарубежных автоматических систем регулирования, которые разработаны в соответствии с зарубежными стандартами (IEEE 421, МЭК 34-16 и др.), при этом:
- не соответствуют требованиям ПТЭ, ПУЭ и ГОСТ 21558-2000
- не содержат ряд основных функций (релейная форсировка, блокировка работы системного стабилизатора при небалансах активной мощности в ЭЭС и др.)


Неправильная работа АРВ приводит к аварийным ситуациям в ЕЭС России!

■ Имеются проблемы согласования действующих и разрабатываемых стандартов в части понятийного аппарата (ГОСТ 19431-84, ГОСТ 21027-75, ГОСТ Р 53905-2010), требований к рабочему напряжению оборудования (ГОСТ 239322-92), требований по качеству электрической энергии (ГОСТ 32144-2013) и т.д.

Структура управления ТК 016 «Электроэнергетика»

- Приказом Федерального агентства по техническому регулированию и метрологии (Росстандарт) №1322 от 05.09.2014 принято решение о реорганизации ряда технических комитетов (ТК) по стандартизации в области электроэнергетики и их интеграции на базе ТК 016 «Электроэнергетика».
- Одной из главных задач ТК 016 является повышение эффективности использования потенциала национальной стандартизации для проведения единой технической политики в электроэнергетике, достижения технологической совместимости оборудования и в целом обеспечения надежного функционирования и развития Единой энергосистемы страны.
- Область деятельности ТК 016 стандартизация в электроэнергетике в области электроэнергетических систем и объектов электроэнергетики, включая электрические тепловые, гидравлические и гидроаккумулирующие электростанции, передающие и распределительные электрические сети, а также стандартизация системных требований к оборудованию электрических станций и сетей.

Подкомитет ПК-1 ЭЛЕКТРОЭНЕРГЕТИЧЕСКИЕ СИСТЕМЫ

Руководитель ПК — Шульгинов Н.Г. Базовая организация: ОАО «СО ЕЭС»

Подкомитет ПК-3 ТЕПЛОВЫЕ ЭЛЕКТРИЧЕСКИЕ СТАНЦИИ

Руководитель ПК — Ольховский Г.Г. Базовая организация: ОАО «ВТИ»

Подкомитет ПК-2 ЭЛЕКТРИЧЕСКИЕ СЕТИ (МАГИСТРАЛЬНЫЕ И РАСПРЕДЕЛИТЕЛЬНЫЕ)

Руководитель ПК – Бердников Р.Н. Базовая организация: ОАО «Россети»

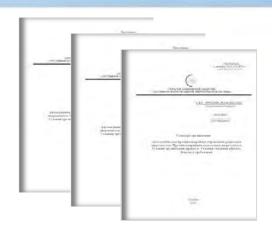
Подкомитет ПК-4 ГИДРОЭЛЕКТРОСТАНЦИИ

Руководитель ПК – Богуш Б.Б. Базовая организация: ОАО «РусГидро» Секретариат: НП «Гидроэнергетика России»

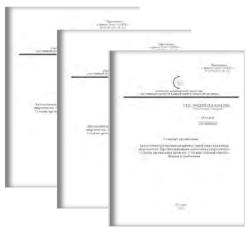
Подкомитет ПК-5 РАСПРЕДЕЛЕННАЯ ГЕНЕРАЦИЯ (ВКЛЮЧАЯ ВИЭ) Руководитель ПК – Илюшин П.В.

Базовая организация: ЗАО «Техническая инспекция ЕЭС»

- Организация выпуска национальных стандартов в области электроэнергетики
 - Разработка в организациях-членах подкомитетов, в т.ч. первоочередная трансформация стандартов организаций (СТО) в стандарты (ГОСТ Р/ГОСТ)
 - Экспертиза в подкомитетах и в ТК 016
 - Сопровождение выпуска стандартов
- Анализ базы национальных и межгосударственных стандартов в области электроэнергетики
 - Формирование реестра стандартов
 - Проверка действующих стандартов на необходимость обновления или отмены
 - Анализ необходимости трансформация ряда отраслевых НТД в стандарты
- > Участие в межгосударственной стандартизации в области электроэнергетики
 - Формирование Межгосударственного технического комитета по стандартизации (МТК) в области электроэнергетики на базе ТК 016
- Вовлечение в международную стандартизацию
 - Эксперты в технических комитетах и рабочих группах ИСО и МЭК
 - Гармонизация стандартов с учетом национальных особенностей
 - Учет передовой практики в стандартизации


Одной из главных задач ТК 016 «Электроэнергетика» является повышение эффективности работ по стандартизации в электроэнергетике с целью:

- > Проведения единой технической политики в отрасли
- > Достижения технологической совместимости оборудования, работающего в энергосистеме
- > Определения системных технических требований к объектам электроэнергетики
- > Обеспечения надежного функционирования и развития Единой энергосистемы страны


OAO «CO E3C»

создана и функционирует Система добровольной сертификации объектов электроэнергетики ЕЭС России (СДС «СО ЕЭС»), приказ ОАО «СО ЕЭС» от 07.09.2005 № 178. Система зарегистрирована Федеральным агентством по техническому регулированию и метрологии в едином реестре СДС 16.12.2005 за рег. № РОСС RU.3279.04ЕЭ00 Перерегистрирована в 2013 году для возможности сертификации устройств РЗА.

■ ОАО «Россети»

действует корпоративная система аттестации устройств РЗА (в том числе устройств ПА) в соответствии с «Методикой в ОАО «Россети» проведения аттестации оборудования, материалов и систем в электросетевом комплексе», и «Порядком проведения аттестации оборудования, материалов и систем в электросетевом комплексе на электросетевых объектах ДЗО ОАО Россети» от 31.03.2014 № 225пр/2

Цели и принципы стандартизации в Российской Федерации установлены Федеральным законом от 27 декабря 2002 г. № 184-ФЗ «О техническом регулировании», объекты стандартизации и общие положения при разработке и применении стандартов организаций Российской Федерации.

Создание подкомитета В5 РНК СИГРЭ «Релейная защита и автоматика» на базе ОАО «СО ЕЭС»

Подкомитет В5 «Релейная защита и автоматика» создан решением Технического комитета РНК СИГРЭ от 21.08.2014 № 5 на базе ОАО «СО ЕЭС». Руководителем подкомитета В5 назначен заместитель директора по управлению режимами ОАО «СО ЕЭС» Андрей Васильевич Жуков

- 1. Концептуальные вопросы построения и развития систем РЗА и систем автоматизации объектов электроэнергетики, учитывающие перспективы инновационного развития электроэнергетики и создания интеллектуальных сетей при внедрении в ЕЭС России управляемых сетевых элементов на базе силовой электроники;
- 2. Вопросы развития системы РЗА при внедрении в распределительные сети возобновляемых источников энергии и распределенной генерации;
- 3. Формирование технических требований на разработку современных устройств и аппаратуры РЗА, ориентированных на создание интеллектуальных электронных устройств, базирующихся на достижениях современной цифровой техники и коммуникаций;
- 4. Методы повышения эффективности функционирования системы P3A: повышение точности моделирования процессов и характеристик сетевых элементов; совершенствование характеристик устройств P3A; использование информационной теории P3A; разработка адаптивных алгоритмов функционирования устройств P3A.
- 5. Концептуальные вопросы разработки «цифровой подстанции»;
- 6. Вопросы применения стандарта МЭК 61850 в системах РЗА;
- 7. Разработка требований и рекомендаций по обеспечению кибербезопасности современных технических комплексов РЗА;
- 8. Вопросы применения и развития технологии векторного измерения параметров электроэнергетического режима для задач мониторинга, управления и защиты (WAMPACS);
- 9. Вопросы технического обслуживания и повышения уровня эксплуатации устройств и технических комплексов РЗА;
- 10. Развитие системы мониторинга и анализа функционирования устройств и комплексов РЗА;
- 11. Развитие процедур аттестации и сертификации алгоритмов и устройств РЗА;
- 12. Вопросы развития нормативно-технической базы РЗА;
- 13. Вопросы развития программных комплексов расчетов и выбора параметров настройки устройств РЗА.

Рабочие группы В5 РНК СИГРЭ

Наименование	Руководители
Концептуальные вопросы развития системы РЗА	А.А. Волошин (ФГБОУ ВПО «НИУ МЭИ») А.Н. Подшивалин (ООО «ИЦ Бреслер»)
Влияние FACTS на функциональность системы P3A	А.А. Лисицын (ОАО «НТЦ ЕЭС»)
Система РЗА для ЭЭС с ВИЭ и	Е.И. Сацук (ОАО «СО ЕЭС»)
распределенной генерацией	О.А. Онисова (ОАО «ВНИИР»)
Моделирования для задач РЗА	А.А. Наволочный (ОАО «ВНИИР»)
Применение МЭК 61850 в комплексах РЗА	И.Н. Николаев (ООО «ИЦ Бреслер»)
объектов электроэнергетики	Н.М. Александров (ООО НПП «Динамика»)
Вопросы кибербезопасности в РЗА	М.В. Никандров (ЗАО «ЧЭАЗ»)
	П.В. Литвинов (ЗАО «РТСофт»)
Развитие технологии WAMPAC	Д. М. Дубинин (ОАО «СО ЕЭС») Ю.В. Иванов (ООО «Прософт-Системы»)
Подготовка специалистов в области РЗА	Г.С. Нудельман (ОАО «ВНИИР»)

Подкомитет В5 РНК СИГРЭ

Harrison & ESC. /

50,000

EBC Poccii

О компании

Деятельност

Филиал

HOBOCT

Контакты и рехвизиты

www.so-ups.ru
Оперативная информация о работе ЕЭС России

Индикаторы ЕЗС

Новости Системного оператора

Ратанское РДУ принято участие в тренировие по пинациации аварии в ратионатаной

Спасибо за внимание

Бустамный оптротор образов натурные испектаний Единой энергосистолы: России

(уроков РДУ примяло участив в пиввидации условного нарушения электроснай жания потребить пен тороля Курска и Курскои области

Жуков Андрей Васильевич

Контактная информация: <u>zhukov@so-ups.ru</u>, (495) 627-83-06

ТЕХНОЛОГИЧЕСКИЙ САКІ КОНКУРЕНТНОГО ОТБОРА МОЦІНОСТІ

