Guide to the conversion of existing AC lines to DC operation

Presented by Stefan Steevens

SC B2

22 August 2016
TABLE OF CONTENTS

SECTION 1: Introduction
SECTION 2: AC to DC conversion opportunities
SECTION 3: Conversion configuration options
SECTION 4: Corona and field effects of converted lines
SECTION 5: Insulation coordination aspects
SECTION 6: Issues and costs of line conversion
SECTION 7: Case studies
SECTION 8: Further investigations
SECTION 9: Conclusion
SECTION 1:

Guide to the conversion of existing AC lines to DC operation: TB583

- Special characteristics of DC overhead lines
 - DC line configuration
 - DC losses analysis
 - DC insulation coordination
- Special considerations for AC to DC conversion
 - Corrosion effects of AC/DC hybrid configurations
 - DC insulator dimensioning
 - Conversion issues and costs

*TB = Cigre Technical Brochure

SECTION 2:

TUTORIAL

AC to DC conversion opportunities

<table>
<thead>
<tr>
<th>Current uprating AC voltage</th>
<th>Upgrading</th>
<th>Conversion to DC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SECTION 2:

TB 425 (2010): Capacity increase vs. cost for different line uprating – conversion options
SECTION 2:
Power capacity gain from conversion to DC

Max. voltage level:
\[U_{DC_{\text{peak}}} \quad \text{(corona & field effects, insulator pollution)} \]
\[U_{DC_{\text{max}}} \quad \text{(corona effects, switching overvoltage)} \]

Max. current level:
\[I_{DC} = I_{\text{thermal rating of conductors}} \]

SECTION 2:
Conversion applications

- DC embedded in AC systems (TB 536)
 - Control of voltage and power flow
- DC for segmentation of AC systems
 - Control of power flow between AC grid segments
- DC grids (TB 533)
 - Meshed DC networks using DC breakers

SECTION 3
TUTORIAL
Conversion configuration options
SECTION 3:
DC line configurations after conversion

- **Monopole**
 - Utilizes all three conductors
 - Requires earth return

- ** Bipole**
 - Only two conductors utilized in operation
 - Provides neutral conductor

- **Tripole**
 - Utilizes all three conductors

- **AC/DC hybrid**
 - Requires considerations regarding hybrid corona, field effects etc.

SECTION 3:
Alternative DC line configurations

SECTION 4
TUTORIAL
Corona and field effects of converted lines
SECTION 4:
Limiting criteria for DC voltage level

- DC corona effects
- Audible noise in dry conditions
- Electric field and ion currents at ground level
- Annoying microshocks
- Insulator pollution performance
 - Required insulator length in polluted areas may be in conflict with available tower top clearances & required conductor clearance to ground level

- DC corona effects: audible noise
 - Caused by high electric field on the positive conductor
 - Highest in dry conditions, lower in rain due to space charge limitation
 - Calculated by empirical methods (TB 61)
 - Recommended limit is 40-45 dBA at edge of ROW*
 - AN is an important design issue, that has to be checked for each particular case

- DC corona effects: radio interference
 - Caused by high electric field on the positive conductor
 - Highest in dry conditions, lower in rain due to space charge limitation
 - Calculated by empirical methods (TB 61)
 - Importance depends on broadcast technology
SECTION 4: DC corona effects; corona losses

- Caused by high electric fields on positive & negative conductors
- Increases in risk, but not to the same extent as with AC
- Usually small compared to joule losses, but can be > 25% in some cases
- Cause environmental impact through ion currents & intensified electric field at ground level

SECTION 4: DC field effects

- Electric field at ground level (TB 473):
 - Nominal (geometric) electric field is enhanced 2-3 times by the effect of ion currents caused by corona discharges on the conductors
 - No induction effects as with AC, but annoying microshocks may occur caused by the electric field in combination with ion currents
 - Recommended limits are 20-30 kV/m and 100 nA/m²
 - Enhanced field can be estimated by analytical calculation methods
- Magnetic field at ground level: static field has similar magnitude to the earth's field

Perception and annoyance

Averaged head-hair sensation level as a function of DC electric field for AC electric fields of 1, 2, 5, 10, and 15 kV/m

1. Averaged head-hair sensation level as a function of DC electric field for AC electric fields of 1, 2, 5, 10, and 15 kV/m
SECTION 4: Hybrid AC/DC corona & field effects

![Electric field on conductor surface](image)

Electric field on AC conductors in a DC field

Electric field on DC conductors in an AC field

SECTION 5: TUTORIAL

Insulation coordination aspects

SECTION 5: DC insulator dimensioning

- Normally, existing AC insulators have to be replaced with insulators intended for DC.
- Ceramic & glass insulators for DC have special corrosion protection & electrical characteristics.
- Composite long-rod insulators made of Hydrophobicity Transfer Materials (HTM) have generally better pollution performance in comparison with ceramic or glass insulators of the same length.
- The limited space available on the existing line necessitates optimized dimensioning of the DC insulators.
 - Simplified dimensioning approach (TB 518)
 - Statistical dimensioning approach
SECTION 5: DC insulation coordination

- Temporary overvoltages
 - Depending on converter configuration
 - Normally < 1.8-2.0 p.u.
- Slow-front overvoltages
 - Occur on healthy pole for single pole-to-ground faults
 - Normally < 1.7-1.8 p.u.
- Fast-front overvoltages
 - Occur when lightning strikes conductors or shieldwires
 - Slightly higher stress on the insulation than with AC due to high and constant conductor voltage
 - Positive pole vulnerable to backflashover
 - Negative pole vulnerable to shielding failure

- Neutral conductor (if present)
 - Slow-front overvoltages in the range of a few hundred kilovolts are induced on the neutral conductor during pole-to-ground faults
 - High-fast-front overvoltages occur across the neutral insulation upon lightning strikes to the line
 - Both events may cause flashovers of the neutral insulation
 - Arcing horns with sufficient V-I characteristics are needed in order to extinguish the arc

- Overvoltage withstand of air clearance
 - Transients are superimposed on the DC voltage
 - Overvoltage withstand of air gaps is only marginally affected by the presence of DC bias (use total peak)
- Safety clearances to ground level
 - Governed by national codes & regulations (for AC)
 - Usually based on coordination between the flashover voltage of insulators & the flashover voltage of the safety clearance by applying appropriate gap factors
 - Fast-front overvoltages are decisive for determination of safety clearances on DC lines
SECTIONS 6: Issues and Costs of Line Conversion

- Check of conductors & connectors
- Operation close to thermal limit after conversion?
- Check of structures & foundations
 - Changing mechanical loads & points of application?
- Outages before & after conversion
 - Replacement of insulators
 - Live line replacement minimizes the outage time
 - Re-routing of the line to the new converter station
 - Testing & commissioning of the HVDC equipment

SECTIONS 6: Issues of Line Conversion

- Insulator replacement & rearrangement
- Check DC compatibility of existing AC insulation (i.e., regarding creepage distance)
- Optional insulator rearrangement to allow longer insulation (with longer creepage) without decreasing the safety clearance to ground level
SECTION 6: Identification of costs components:
- Insulator replacement
- Conductor and/or connector replacement
- Structure & foundation modifications
- Power losses
 - Operation closer to thermal limit
- Operation & maintenance
- Protection of external installations
 - Pipelines, telecommunication lines, railway systems

SECTION 6: Costs for line conversion

SECTION 6: Cost for total capacity vs. incremental capacity gain

SECTION 7 TUTORIAL
Case studies
SECTION 7:
Case study no. 1
Conversion of 380 kV line to DC:
- Effect on power capacity by constraints on conductor surface gradient at high altitude
 - Corresponding maximum gradient: 17.5, 20 & 25 kV/cm
- Effect of number of subconductors

SECTION 7:
Case study no. 2
Conversion double-circuit 380 kV line to hybrid line:
- Repositioning of subconductors to create a triple-conductor DC bipole from a twin-conductor AC circuit
- Statistical dimensioning of DC composite insulators
- Audible noise & electric fields in hybrid configuration allow ±450 kV DC
- Power capacity gain $P_{DC}/P_{AC} > 2$

SECTION 7:
Case study no. 3
Conversion of two parallel 287 kV lines to DC:
- The capacity of the 287 kV line is limited to 560 MW
- DC voltage limited by audible noise (gradient <24 kV/cm)
- Optimal configuration is two split bipoles ±245 kV DC
- Center phase reconducted with HTLS conductor to double the current rating
- DC power capacity is 1762 MW
SECTION 7:
Case study no. 4

Conversion of 275 kV line to ± 270 or ± 500 kV DC:
- Extensive system studies performed to optimize DC current ratings with regard to AC & DC system losses
- Cost estimation & optimization of line interventions
- Optimal option includes tower top reconfiguration & reconductoring for ±500 kV DC

SECTION 8:
TUTORIAL
Further investigations

Further investigations: Aspects of insulation coordination for DC links using hybrid lines

Simulation results using PSCAD

<table>
<thead>
<tr>
<th>Slow front overvoltages at converter terminals caused by earth fault</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simulated scenario conditions</td>
</tr>
<tr>
<td>🌋</td>
</tr>
<tr>
<td>Symmetrical standard</td>
</tr>
<tr>
<td>Slow front overvoltage at converter terminals</td>
</tr>
<tr>
<td>🌋</td>
</tr>
<tr>
<td>SFO in pu at fault location caused by earth faults at different fault locations</td>
</tr>
<tr>
<td>🌋</td>
</tr>
<tr>
<td>Symmetrical standard</td>
</tr>
<tr>
<td>Slow front overvoltage at converter terminals caused by earth fault</td>
</tr>
<tr>
<td>🌋</td>
</tr>
<tr>
<td>SFO in pu at fault location caused by earth faults at different fault locations</td>
</tr>
<tr>
<td>🌋</td>
</tr>
<tr>
<td>Symmetrical standard</td>
</tr>
<tr>
<td>Slow front overvoltage at converter terminals caused by earth fault</td>
</tr>
<tr>
<td>🌋</td>
</tr>
</tbody>
</table>
SECTION 8: Further investigations: Aspects of insulation coordination for DC links using hybrid lines

FFO in pu at fault location, converter terminal and GIL-OHL interface caused by lightning:

<table>
<thead>
<tr>
<th>FFO in pu at</th>
<th>Transmission line</th>
<th>2-level VSC</th>
<th>3-level VSC</th>
<th>MMC</th>
<th>Insulator string</th>
<th>Shortest path</th>
<th>Insulator string</th>
<th>Shortest path</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fault location</td>
<td>DC service voltage</td>
<td>Dff [m]</td>
<td>D sf [m]</td>
<td>D [m]</td>
<td>DC</td>
<td>VSC</td>
<td>GIL</td>
<td>OHL</td>
</tr>
<tr>
<td>C1</td>
<td>2.30</td>
<td>2.30</td>
<td>2.30</td>
<td>2.30</td>
<td>2.30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C3</td>
<td>3.37</td>
<td>1.90</td>
<td>4.37</td>
<td>3.37</td>
<td>3.37</td>
<td>1.90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C5</td>
<td>3.25</td>
<td>2.15</td>
<td>3.25</td>
<td>3.25</td>
<td>3.25</td>
<td>2.15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C2</td>
<td>3.11</td>
<td>2.07</td>
<td>3.11</td>
<td>3.11</td>
<td>3.11</td>
<td>2.07</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C4</td>
<td>3.67</td>
<td>3.18</td>
<td>3.67</td>
<td>3.67</td>
<td>3.67</td>
<td>3.18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C6</td>
<td>3.77</td>
<td>3.24</td>
<td>3.77</td>
<td>3.77</td>
<td>3.77</td>
<td>3.24</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FFO = 2.1 pu to be considered for IC ensuring adequate arrester ratings. Simulation result using PSCAD®

SECTION 8: Further investigations: Ohmic coupling between AC and DC circuits on hybrid overhead lines

- Idea of “Ultranet” by Amprion GmbH, Germany
SECTION 8:
Further investigations: Ohmic coupling between AC and DC circuits on hybrid overhead lines

- Results of the tests done in 2013: monopole configuration
- Highest ion currents in the nearest conductor
- Lower impact in bipole arrangement
- Strong dependency on rain intensity (ratio between fair and rainy weather conditions up to 10)
- Increase of ion currents by 20% to 30% due to adjacent AC conductors

SECTION 9
TUTORIAL

Conclusion
SECTION 9: Conclusion

- Conversion from AC to DC operation is possible
- Electric fields of hybrid lines, especially DC lines, cause annoying effects
- Increased neutral insulation level significantly improves the chances of spontaneous extinction of DC arcs
- Conversion must achieve a very large boost in capability before the effective cost becomes reasonable compared with the avoided cost of new line
- Insulation coordination for hybrid lines is feasible
- Special focus on different coupling phenomena is necessary
COPYRIGHT © 2016

This tutorial has been prepared based upon the work of CIGRE and its Working Groups. If it is used in total or in part, proper reference and credit should be given to CIGRE.

DISCLAIMER NOTICE

“CIGRE gives no warranty or assurance about the contents of this publication, nor does it accept any responsibility, as to the accuracy or exhaustiveness of the information. All implied warranties and conditions are excluded to the maximum extent permitted by law”.
References

- Cigre Technical Brochure 583
