Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

«НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Институт – Энергетический Направление – Электроэнергетика Кафедра – Электрические сети и электротехника

АНАЛИЗ ПРИМЕНИМОСТИ МЕТОДОВ СИНХРОНИЗАЦИИ ИЗМЕРЕНИЙ ПАРАМЕТРОВ РЕЖИМА НА ПОДСТАНЦИЯХ СЕВЕРНОЙ ЧАСТИ ТРАНЗИТА 220 КВ ТОМСКОЙ ЭНЕРГОСИСТЕМЫ

Выпускная квалификационная работа на соискание квалификации бакалавр

Студент гр. 9А86

Руководитель д.т.н., профессор каф. ЭСиЭ

Консультанты: по режимам энергосистем ст. преп. каф. ЭСиЭ

по надежности к.т.н, доцент каф. ЭСиЭ

по спец. вопросу к.т.н, асс. каф. ЭСиЭ

Допустить к защите: заведующий кафедрой ЭСиЭ, доцент, канд. тех. наук

(подпись, дата)

8.06.2012 полпись, лата)

В.В. Осипчук

Ю.В. Хрущев

18.06.12 блпись. дата)

(подпись, дата)

X6. 12

подпись, дата)

9.26-12

(подпись, дата)

К.И. Заподовников

С.Г. Слюсаренко

А.В. Панкратов

В.И. Полищук

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

УТВЕРЖДАЮ: Зав. кафедрой ЭСиЭ

В.И.Полищук

ЗАДАНИЕ

на выполнение выпускной квалификационной работы студентке гр. 9А86 Осипчук Вере Витальевне

1 Тема выпускной квалификационной работы:

Анализ применимости методов синхронизации измерений параметров режима на подстанциях северной части транзита 220 кВ Томской энергосистемы.

2 Срок сдачи студентом готовой работы: 05.06.2012

3 Исходные данные к работе: нормальная схема электрических соединений северной части Томской энергосистемы, данные о параметрах ЛЭП, подстанций, нагрузок.

4 Содержание текстового документа (перечень подлежащих разработке вопросов):

4.1 Анализ режимов работы сети электроснабжения северной части Томской энергосистемы /консультант Слюсаренко С.Г./

4.2 Анализ режимной и схемной надёжности электрической сети северной части Томской энергосистемы /консультант Заподовников К.И./

4.3 Анализ возможности применения современных методов синхронизации измерений параметров режима по концам линии электропередачи Вертикос-Раскино /консультант Панкратов А.В./

5 Перечень демонстрационных материалов (слайдов):

5.1 Электрическая схема северной части транзита 220 кВ Томской энергосистемы.

5.2 Результаты анализа режимов работы северной части транзита

5.3 Результаты анализа режимной и схемной надёжности северной части транзита

5.4 Результаты анализа возможности применения современных методов синхронизации измерений параметров режима по концам линии электропередачи Вертикос-Раскино

6. Дата выдачи задания на выполнение ВКР: 30.01.2012

Руководитель <u>Зо 2112</u> Ю.В. Хрущев

(подпись, дата)

Задание приняла к исполнению *60.01.201*2 В.В. Осипчук

(подпись, дата)

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего

профессионального образования

«НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

ЭЛЕКТРОТЕХНИЧЕСКИЙ ИНСТИТУТ

ОТЗЫВ

РУКОВОДИТЕЛЯ О ВЫПУСКНОЙ КВАЛИФИКАЦИОННОЙ РАБОТЕ

Студент Осипчук Вера Витальевна

Тема Анализ применимости методов синхронизации измерений параметров режима на подстанциях северной части транзита 220 кВ Томской энергосистемы.

Специальность <u>140200</u> Группа <u>9A86</u> Кол-во листов чертежей _____Кол-во страниц записки

Характеристика работы

ВКР содержит результаты анализа синхронизации измерений режимных параметров электроэнергетических систем, проводимых в различных географических точках России.. Синхронизация таких измерений является важным элементом повышения точности определения места повреждения воздушных линий электропередачи. Анализ проведён применительно к Томской энергосистеме.

____.

Проявленная студентом самостоятельность при выполнении работы. Плановость и дисциплинированность в работе. Умение пользоваться литературным материалом, индивидуальные особенности студента

Осипчук В.В. хорошо владеет компьютерной техникой, быстро ориентируется в содержании поставленных задач, имеет достаточные базовые знания для их решения. Анализ проблемы синхронизации измерений провела с минимальным участием руководителя.

Отрицательные особенности ВКР Без замечаний

Положительные стороны ВКР

ВКР с достаточной полнотой отражает современное состояние проблемы синхронизации измерений режимных параметров в электроэнергетических системах применительно к задаче определения места повреждения линий электропередачи. Проведённый анализ полностью соответствует уровню и объёму студенческой работы.

Предлагаемая оценка ВКР

Отлично

Хрущев Юрий Васильевич

Реферат

Выпускная квалификационная работа – 125 с., 27 рисунков, 53 таблицы, 22 источника литературы.

Целью выпускной квалификационной работы является анализ применимости современных методов синхронизации на подстанциях транзита 220 кВ, а также исследование режимов работы электрических сетей и оценка надежности северной части Томской энергосистемы.

Выпускная квалификационная работа выполнена с помощью программ IndorGIS, MS Excel в текстовом редакторе MS Word и представлена на компакт - диске (в конверте на обороте обложки).

Оглавление:

Задание	2
Реферат	4
Введение	7
Глава 1. Исследование режимов системы электроснабжения северной части Томской энергосистемы	ı 9
1.1. Основные характеристики схемы	10
1.1.1.Описание схемы	10
1.1.2.Исходные данные	12
1.2. Расчет нормальных режимов максимальных и минимальных нагрузок	15
1.2.1.Расчет режима максимальных нагрузок	15
1.2.2.Расчет режима минимальных нагрузок	22
1.3. Расчет послеаварийного режима максимальных нагрузок объединенно сети 27	эй
1.3.1.Отключение двух автотрансформаторов на ПС «Советско- Соснинская»	27
1.3.2.Отключение автотрансформатора на ПС «Чапаевка»	32
1.3.3.Отключение цепи линии «Советстко-Соснинская – Вахская»	34
1.3.4. Отключение цепи линии «Советско-Соснинская – Чапаевка»	38
1.4. Оценка пропускной способности	43
1.4.1.Оценка пропускной способности электрической сети в направлении «Советско-Соснинская – Чапаевка»	43
1.4.2.Оценка пропускной способности электрической сети в направлении «Советско-Соснинская – Вахская»	44
1.5. Увеличение пропускной способности	46
1.5.1. Увеличение пропускной способности электрической сети в направлении «Советско-Соснинская – Чапаевка»	46
1.5.2. Увеличение пропускной способности электрической сети в направлении «Советско-Соснинская – Вахская»	47
1.6. Выбор сечения проводника ВЛЭП «Советско-Соснинская – Вахская (отрезок Советско-Соснинская-отп. Стрежевое)»	50
Вывод к главе 1	52
Глава 2. Оценка надежности северной части Томской энергосистемы	54
2.1. Задача режимной надежности	56
2.1.1.Формирование вероятностной модели нагрузки	59

2.1.2.Формирование вероятностной модели располагаемой мощне системы	ости
2.1.3. Формирование вероятностной модели энергосистемы	•••••
2.1.4.Расчет и анализ коэффициентов бездефицитной работы и го энергосистемы	товнос
2.1.5.Расчет и анализ показателей надежности с учетом планово - принудительных ремонтов	-
2.1.6. Формирование вероятностной модели нагрузки	•••••
2.1.7.Формирование вероятностной модели располагаемой мощне системы	ости
2.1.8. Формирование вероятностной модели энергосистемы	
2.1.9.Расчет и анализ коэффициентов бездефицитной работы и го энергосистемы	товнос
2.2. Задача схемной надежности	•••••
2.2.1.Алгоритм расчета	
2.2.2. Расчет показателей надежности питания узла ПС Малоречен	нская.
Вывод к главе 2	•••••
Глава 3. Анализ возможности применения современных методов синхронизации измерений параметров режима по концам линий электропередачи	
Используемые сокращения и термины в главе 3	
3.1. Современное развитие вопроса синхронизации измерений	
3.1.1.Задача синхронизации измерений в электроэнергетике	
3.1.2. Методы и протоколы синхронизации измерений, состояние 96	пробл
3.1.2.Примеры систем, реализующих синхронизацию внутренних отдельных устройств	часов
3.2. Анализ применимости методов синхронизации измерений на	
подстанциях северной части транзита 220 кВ Томской энергосисте	мы
Вывод к главе 3	
Заключение	
Список использованной литературы	

Введение

Одной из современных мировых тенденций в электроэнергетике является построение «умных сетей», которые характеризуются кардинально новыми уровнями управляемости и наблюдаемости. Это достигается путем внедрения новых устройств и технологий.

Обязательным условием «умных сетей» создания является синхронизация объектов, обеспечивающих управление режимами энергосистем. Поэтому целью выпускной квалификационной работы стал анализ применимости современных методов синхронизации на подстанциях транзита 220 кВ, а также исследование режимов работы электрических сетей и оценка надежности северной части Томской энергосистемы как одной из наиболее «уязвимых» связей Томской энергосистемы.

В первой главе исследуются режимы системы снабжения северной части Томской энергосистемы, а именно режимы максимальных и минимальных нагрузок, послеаварийные режимы. Также в этой главе производится введение напряжений в узлах энергосистемы в допустимую область.

Во второй главе выполняется оценка надежности исследуемой части энергосистемы путем постановки и решения задач режимной и схемной надежности.

Третья глава посвящена рассмотрению развития задачи синхронизации измерений в электроэнергетике и анализу применимости методов синхронизации измерений на подстанциях транзита 220 кВ северной части Томской энергосистемы.

Методологической основой исследования является системный междисциплинарный подход, позволяющий использовать теоретические положения как режимов энергосистем и дальних электропередач, так и других наук (надежность энергосистем, электромеханические переходные процессы и т.д.).

7

Теоретическую основу выпускной квалификационной работы составили труды отечественных и зарубежных исследователей таких, как Мокеев А.В., Ульянов Д.Н., Дреер А., Данилин В.А.

Глава 1. Исследование режимов системы электроснабжения северной части Томской энергосистемы

В процессе работы ЕЭС может находиться в различных режимах: нормальном, утяжеленном, аварийном и послеаварийном. В каждом из них решаются различные задачи управления; различны также степень автоматизации управления и характер распределения обязанностей между оперативным персоналом территориальных ступеней управления.

Нормальный режим предполагает выполнение установленных требований по надежности и качеству электроэнергии.

Послеаварийный - режим, устанавливающийся в энергосистеме после ликвидации аварии. Часто является утяжеленным, вызывает необходимость вмешательства персонала для ограничения длительности.

Целью первой главы выпускной квалификационной работы является выполнение комплекса расчетов нормальных и послеаварийных режимов электрической системы.

Для достижения поставленной цели необходимо решить следующие задачи:

- Сформировать исходные данные по исследуемой системе. При этом заданными считать мощности трансформаторов, нагрузок, сечения и длины ЛЭП.
- Провести расчеты существующей схемы в максимальном и минимальном режимах нагрузок энергосистемы с введением в допустимую область по напряжению и токам.
- Рассчитать послеаварийный режим с введением в допустимую область.
- Оценить пропускную способность электрических сетей в заданных направлениях.

В результате выполнения главы 1 должны быть получены практические навыки расчета режимов электрических систем с использованием программы IndorGIS, а также навыки анализа послеаварийных ситуаций и ввода их параметров в допустимую область.

1.1. Основные характеристики схемы

1.1.1. Описание схемы

Томская энергосистема является дефицитной, недостающая мощность в северную часть поступает от Тюменской области от Нижневартовской ГРЭС, генераторная мощность которой обеспечивается двумя энергоблоками по 800 МВт.

Учет внешней сети в рассматриваемой схеме осуществляется установкой балансирующего узла на подстанции «Советско – Соснинская». От данной подстанции по ЛЭП 220 кВ осуществляется питание ПС «Чапаевка», «Раскино», «Вертикос». Далее вся электроэнергия распределяется по сетям 110 кВ и 35 кВ, которые питают потребителей напряжением 35 кВ и 6 кВ. Всего в схему входит 15 подстанций.

Особенностью северной части Томской энергосистемы является нормально разомкнутый транзит между подстанциями «Вертикос» и «Парабель».

На рисунке 1.1 представлена схема исследуемой энергосистемы.

1.1.2. Исходные данные

Подстанция	Количество и тип	S _{HOM}	Предел	Паспортные данные		нные
	трансформаторов	now	регулирования	U	$U_{\scriptscriptstyle HOM}$ обмоток	
		MBA	$n \times \%$	BH	СН	HH
				кВ	κВ	кВ
Чапаевка	3хАТДЦТН	63	$\pm 6 \times 2$	230	121	10,5
Раздольное	2xTPДH	25	±9×1,78	115	-	10,5-
						10,5
Александровская	1хТДТН	16	±9×1,78	115	38,5	10,5
	1хТДТН	25	±9×1,78	115	38,5	10,5
Малореченская	2xTДTH	16	±9×1,78	115	38,5	6,6
Ломовая	2xTMH	6,3	±9×1,78	115	-	6,6
Катыльгинская	2xTДTH	25	±9×1,78	115	38,5	6,6
Первомайская	2xTДTH	25	±9×1,78	115	38,5	6,6
Советско-	3хАТДЦТН	63	$\pm 6 \times 2$	230	121	10,5
Соснинская	2xTДTH	63	±9×1,78	115	38,5	6,6
Стрежевое	2xTДTH	25	±9×1,78	115	38,5	10,5
Вахская	1хТДТН	25	±9×1,78	115	38,5	6,6
	2xTДTH	16	±9×1,78	115	38,5	6,6
Раскино	2xTPДH	32	±9×1,78	230	-	11-11
Вертикос	2хАТДЦТН	63	$\pm 6 \times 2$	230	121	10,5
Завьялово	1хТРДН	32	±9×1,78	230	-	11-11
Карасок	1xTДTH	25	±9×1,78	230	38,5	11

Таблица 1.1 – Параметры трансформаторов

Таблица 1.2 – Параметры ЛЭП

Линия	Название участка	Uном., кВ	I доп., А	R, Om	Х, Ом	В, мкСм	Тип и длина
ПВ-224	Парабель-Вертикос (отрезок Завьялово-Каргасок)	220,00	610,00	6,83	25,19	75,39	АСО 240/32 - 57,9 км
ПВ-224	Парабель-Вертикос (отрезок Завьялово-Вертикос)	220,00	610,00	6,09	22,44	67,16	АСО 240/32 - 51,58 км
BP-237	Вертикос-Раскино (отрезок 1)	220,00	610,00	5,32	19,62	58,72	АСО 240/32 - 45,1 км
BP-227	Вертикос-Раскино(отрезок 1)	220,00	610,00	5,32	19,62	58,72	АСО 240/32 - 45,1 км
ЧС-226	Чапаевка - Советско-Соснинская(отрезок 1)	220,00	610,00	14,16	0,43	1,30	АСО 240/32 - 120 км
ЧС-236	Чапаевка - Советско-Соснинская(отрезок 1)	220,00	610,00	14,16	52,20	156,24	АСО 240/32 - 120 км
CC-4	Советско-Соснинская - Вахская(отрезок отп. Стрежевое-Вахская)	110,00	375,00	22,82	30.93	112,15	АЖ 120 - 78,7 км
CB-5	Советско-Соснинская - Вахская(отрезок отп. Стрежевое-Вахская)	110,00	450,00	15,79	32,51	104,76	АС 150/24 - 77,4 км
CC-3	Советско-Соснинская - Вахская(отрезок 1)	110,00	375,00	31,03	42,05	152,48	АЖ 120 - 107 км
CC-4	Советско-Соснинская - Вахская(отрезок Советско-Соснинская-отп.	110,00	375,00	8,21	11,12	40,33	АЖ 120 - 28,3 км
	Стрежевое)						
CB-5	Советско-Соснинская - Вахская(отрезок Советско-Соснинская-отп.	110,00	450,00	5,88	12,96	38,98	АС 150/24 - 28,8 км
	Стрежевое)						
C-95	Раздольное - Малореченская (отрезок отп. Александровская-Малореченская)	110,00	330,00	12,34	17,79	53,53	АС 95/16 - 41 км
C-96	Раздольное - Малореченская(отрезок отп. Александровская-	110,00	330,00	12,34	17,79	53,53	АС 95/16 - 41 км
	Малореченская)						
C-96	Раздольное - Малореченская (отрезок Раздольное-отп. Александровская)	110,00	330,00	5,76	8,31	25,00	АС 95/16 - 19,15 км
C-95	Раздольное - Малореченская (отрезок Раздольное-отп. Александровская)	110,00	330,00	5,76	8,31	25,00	АС 95/16 - 19,15 км
C-93	Чапаевка - Раздольное(отрезок 1)	110,00	330,00	4,82	6,94	20,89	АС 95/16 - 16 км
C-94	Чапаевка - Раздольное(отрезок 1)	110,00	330,00	4,82	6,94	20,89	АС 95/16 - 16 км
РЧ-225	Раскино - Чапаевка(отрезок 1)	220,00	610,00	10,38	38,28	114,58	АСО 240/32 - 88 км
РЧ-235	Раскино - Чапаевка(отрезок 1)	220,00	610,00	10,38	38,28	114,58	АСО 240/32 - 88 км
C-91	Чапаевка - Катыльгинская(отрезок отп. Ломовая-Катыльгинская)	110,00	390,00	15,37	26,90	83,73	АС 120/19 - 63 км
C-92	Чапаевка - Катыльгинская(отрезок отп. Ломовая-Катыльгинская)	110,00	390,00	15,37	26,90	83,73	АС 120/19 - 63 км
С-92П	Катыльгинская - Первомайское м/р(отрезок 1)	110,00	330,00	7,77	11,20	33,68	АС 95/16 - 25,8 км
С-91П	Катыльгинская - Первомайское м/р(отрезок 1)	110,00	330,00	7,77	11,20	33,68	АС 95/16 - 25,8 км
C-92	Чапаевка - Катыльгинская(отрезок Чапаевка-отп. Ломовая)	110,00	390,00	29,52	51,67	160,81	АС 120/19 - 121 км
C-91	Чапаевка - Катыльгинская(отрезок Чапаевка-отп. Ломовая)	110,00	390,00	29,52	51,67	160,81	АС 120/19 - 121 км

Подстанция	Harj	рузка
	P, MBm	<i>Q</i> , Мвар
Советско-Соснинская (6 кВ)	1,500	1,275
Советско-Соснинская (35 кВ)	21,420	13,275
Стрежевое (6 кВ)	2,1	1,3
Стрежевое (35 кВ)	8,5	5,3
Вахская (6 кВ, 1сек)	2,125	1,317
Вахская (35 кВ,1 сек)	8,5	5,268
Вахская (6 кВ, 2 сек)	1,36	0,843
Вахская (35 кВ,2 сек)	5,44	3,371
Вахская (35 кВ,3 сек)	6,8	4,214
Чапаевка	5,34	3,319
Раздольное	10,625	6,585
Александровская (6 кВ, 1сек)	10,625	6,535
Александровская (6 кВ, 2сек)	6,8	4,2
Малореченская	1,244	0,759
Ломовая	2,667	1,659
Катыльгинская (6 кВ)	1,913	1,185
Катыльгинская (35 кВ)	7,65	4,74
Первомайское м/р. (6 кВ)	1,8	1,3
Первомайское м/р. (35 кВ)	8,825	5,185
Раскино	13,6	8,429
Вертикос	1,5	1,275
Завьялово	1,5	1,275

Таблица 1.3 – Параметры нагрузок

1.2. Расчет нормальных режимов максимальных и минимальных

нагрузок

1.2.1. Расчет режима максимальных нагрузок

Введение параметров в допустимую область сводится к регулировке напряжения на подстанциях. Допустимое отклонение напряжения на шинах подстанций 110 - 220 кВ в большую или меньшую сторону - 5% от номинального напряжения, на шинах потребителей 6-35 кВ - 2,5%, ток в линии не должен превышать допустимых значений.

Расчет был произведен в программе «IndorGIS». Входными данными являлись значения активных и реактивных нагрузок, параметры ЛЭП и трансформаторов.

За балансирующий узел был принят узел 220 кВ на подстанции «Советстко-Соснинская».

В таблице 1.4 представлены параметры расчета.

Таблица 1.4 – Параметры расчета максимальных нагрузок до регулирования

Параметры расчёта	
Число итераций	14
Количество контуров в схеме	12
Достигнутая точность по напряжениям	0,09 кВ (задано 0,1 кВ)
Достигнутая точность по фазовым углам	0,05 ° (задано 0,1 °)
Максимальная величина небаланса мощности	0,3 MBT
Способ учёта нагрузки	
Режим максимальных нагрузок	
Отбор мощности	
Мощность балансирующих узлов	
Активная мощность Рб.у.	139192,64 кВт
Реактивная мощность Qб.у.	-35332,13 кВАр
Потери в линиях электропередачи	
Потери активной мощности dРл	3509,77 кВт
Потери реактивной мощности dQл	7846,62 кВАр
Потери на корону dРкор	0 кВт
Генерация линий dQc	-130042,00 кВАр
Потери в трансформаторах	
Потери активной мощности dРт	417,61 кВт
Потери реактивной мощности dQт	13061,44 кВАр
Активные потери холостого хода dPxx	678,98 кВт
Реактивные потери холостого хода dQxx	3959,61 кВАр

Суммарные потери в сети	
Потери активной мощности dРсумм	4606,36 кВт (3,33 %)
Потери реактивной мощности dQсумм	-105174,33 кВАр
Мощность нагрузок	
Активная мощность Рсумм	133734,00 кВт
Реактивная мощность Осумм	94821,43 кВАр

В таблице 1.5 приведены проблемные узлы, которые требовали ввода параметров в допустимую область.

Таблина 1	1.5 -	Расчетные	ланные	максимальных	нагрузок	по	регули	рования
таолица			данные	manomalibiliti	mar py 50h	до		pobulin

N	Название	U, ĸB	Delta, гр	Uжел, кВ	dU, %	Р, кВт	Q, кВАр	Re Y,	Im Y,
							· · ·	мкСм	мкСм
32	Первомайское Сек II 6 кВ	6,46	-11,64	6,00	7,68	990,00	715,00	0	0
33	Первомайское Сек II 35 кВ	37,75	-11,48	35,00	7,84	3971,25	2333,25	0	0
34	Александровская Сек II 10 кВ	10,65	-9,45	10,00	6,53	6800,00	4200,00	0	0
35	Малореченская Сек II 10 кВ	10,99	-6,99	10,00	9,86	102,63	62,62	0	0
36	Малореченская Сек II 35 кВ	38,46	-6,97	35,00	9,87	475,83	290,32	0	0
37	Завьялово СекII 10 кВ	10,82	-3,88	10,00	8,24	675,00	573,75	0	0
38	Каргасок Сек I 10кВ	10,80	-4,19	10,00	7,96	900,00	760,00	0	0
39	Катыльгинская Сек I 6 кВ	6,49	-11,62	6,00	8,13	1052,15	651,75	0	0
40	Завьялово Сек I 10кВ	10,82	-3,88	10,00	8,24	825,00	701,25	0	0
41	Катыльгинская Сек I 35 кВ	37,89	-11,46	35,00	8,26	4207,50	2607,00	0	0
42	Первомайское Сек I 6 кВ	6,45	-11,80	6,00	7,44	810,00	585,00	0	0
43	Александровская Сек I 10 кВ	10,39	-11,15	10,00	3,88	10625,00	6535,00	0	0
44	Малореченская Сек I 6 кВ	6,57	-7,05	6,00	9,44	83,97	51,23	0	0
46	Катыльгинская Сек II 6 кВ	6,51	-11,35	6,00	8,48	860,85	533,25	0	0
47	Катыльгинская Сек II 35 кВ	38,01	-11,22	35,00	8,59	3442,50	2133,00	0	0
48	Первомайское Сек I 35 кВ	37,64	-11,68	35,00	7,54	4853,75	2851,75	0	0
49	Раздольное Сек I 10 кВ	10,50	-7,12	10,00	4,97	4781,25	2963,25	0	0
52	Малореченская Сек I 35 кВ	38,31	-7,04	35,00	9,45	581,57	354,83	0	0
55	Ломовая Сек II 6 кВ	6,47	-11,31	6,00	7,77	1466,85	912,45	0	0
56	Вертикос Сек I 10кВ	10,77	-4,20	10,00	7,65	1825,00	701,25	0	0
57	Вертикос Сек II 10кВ	10,78	-3,82	10,00	7,75	675,00	573,75	0	0
59	Раздольное Сек II 10 кВ	10,48	-7,25	10,00	4,81	5843,75	3621,75	0	0
64	Ломовая Сек I 6 кВ	6,50	-10,88	6,00	8,40	1200,15	746,55	0	0
65	Раздольное Сек I 110 кВ	115,72	-6,57	110,00	5,20	0	0	0	0
66	Стрежевое Сек II 10 кВ	10,53	-4,35	10,00	5,27	945,00	585,00	0	0
69	Раскино Сек II 10 кВ	10,63	-4,16	10,00	6,31	7480,00	4635,95	0	0
71	Стрежевое Сек II 35 кВ	36,88	-4,20	35,00	5,38	4675,00	2915,00	0	0
74	Раздольное Сек II 110 кВ	115,72	-6,57	110,00	5,20	0	0	0	0
75	Алексан НПСТ1 Сек II 6 кВ	6,40	-3,69	6,00	6,60	825,00	701,25	0	0
76	Алексан НПС Сек I 35 кВ	37,32	-3,62	35,00	6,64	11781,00	7301,25	0	0
77	Стрежевое Сек I 10 кВ	10,49	-4,28	10,00	4,88	1155,00	715,00	0	0

78	Стрежевое Сек I 35 кВ	36,77	-4,09	35,00	5,05	3825,00	2385,00	0	0
81	Раскино Сек I 10кВ	10,65	-4,02	10,00	6,50	6120,00	3793,05	0	0
84	Чапаевка Сек I 110 кВ	116,78	-6,28	110,00	6,17	0	0	0	0
88	Алексан НПСТ2 Сек II 6 кВ	6,42	-3,45	6,00	6,92	675,00	573,75	0	0
89	Алексан НПС Сек II 35 кВ	37,43	-3,39	35,00	6,95	9639,00	5973,75	0	0
92	Чапаевка Сек II 110 кВ	116,78	-6,28	110,00	6,17	0	0	0	0

Для ввода параметров в допустимую область было произведено регулирование уровней напряжений с помощью изменения коэффициента трансформации. Результаты расчета представлены в таблице 1.6.

Таблица 1.6 – Результаты расчета максимального режима после

регулирования

Параметры расчёта	
Число итераций	22
Количество контуров в схеме	11
Постигнутая точность по напряжениям	0.09 кВ (залано 0.1 кВ)
Лостигнутая точность по фазовым углам	0.02 ° (задано 0.1 °)
Максимальная величина небаланса мошности	0.02 MBT
	0,02 1112 1
Способ учёта нагрузки	
Режим максимальных нагрузок	
Отбор мощности	
Мощность балансирующих узлов	
Активная мощность Рб.у.	138912,80 кВт
Реактивная мощность Qб.у.	-37828,23 кВАр
Потери в линиях электропередачи	
Потери активной мошности dРл	3808.71 кВт
Потери реактивной мошности dОл	8280.20 кВАр
Потери на корону dРкор	0 кВт
Генерация линий dQc	-130216,51 кВАр
Потери в трансформаторах	
Потери активной мошности dPт	568 36 KBT
Потери реактивной мощности dOr	15984.36 кВАр
Активные потери холостого хода dРхх	681.56 кВт
Реактивные потери холостого хода dQxx	3975,54 кВАр
Суммарные потери в сети	
Потери актирной моншости фрамми	5058 63 rBT (3 64 %)
Потери активной мощности di сумм	-101976 40 κBAp
noreph peakinghon monthoern ageymm	101770,40 kbrtp
Мощность нагрузок	
Активная мощность Рсумм	133734,00 кВт
Реактивная мощность Осумм	88746,21 кВАр

Были выбраны следующие отпайки для улучшения уровней напряжения:

Таблица 1.7 – Степени свободы для введения в допустимую область

Марка					
трансформатора/	Степень	Степень			
автотрансформато	свободы	свободы			
ра	(РПв)	(РПс)	Узел ВН	Узел СН	Узел НН
АТДЦТН-					
63000/220/110			Вертикос Сек		Вертикос Сек
(230;121;11)	-	3	I 220 кВ	-	II 10кВ
АТДЦТН-					
63000/220/110			Вертикос Сек		Вертикос Сек
(230;121;11)	-	3	I 220 кВ	-	I 10кB
АТДЦТН-				Советско-	
63000/220/110				Соснин Сек II	
(230;121;6.6)	-	6	Система	110 кВ	-
АТДЦТН-			Советско-	Советско-	
63000/220/110			Соснинск	Соснин Сек І	
(230;121;6.6)	-	6	СекІ 220кВ	110 кВ	-
АТДЦТН-					
63000/220/110			Чапаевка Сек	Чапаевка Сек	Чапаевка Сек
(230;121;11)	-	8	II 220 кВ	II 110 кВ	II 10 кВ
АТДЦТН-					
63000/220/110			Чапаевка Сек	Чапаевка Сек	Чапаевка Сек
(230;121;11)	-	9	I 220 кВ	I 110 кВ	I 10 кВ
ТДТН-25000/220			Каргасок Сек		Каргасок Сек
(230;38.5;11)	6	3	I 220кВ	-	I 10кВ
ТДТН-10000/110			Вахская Сек	Вахская Сек	
(115;38.5;6.6)	10	3	III 110 кВ	III 35 кВ	-
ТДТН-16000/110			Вахская Сек II	Вахская Сек II	Вахская Сек II
(115;38.5;6.6)	8	3	110 кВ	35 кВ	6 кВ
ТДТН-25000/110			Вахская Сек I	Вахская Сек I	Вахская Сек I
(115;38.5;6.6)	9	3	110 кВ	35 кВ	6 кВ
ТДТН-25000/110			Стрежевое	Стрежевое	Стрежевое
(115;38.5;11)	5	3	Сек II 110 кВ	Сек II 35 кВ	Сек II 10 кВ
ТДТН-25000/110			Стрежевое	Стрежевое	Стрежевое
(115;38.5;11)	7	3	Сек I 110 кВ	Сек I 35 кВ	Сек I 10 кВ
			Советско-		Алексан
ТДТН-63000/110			Соснин Сек II	Алексан НПС	НПСТ2 Сек II
(115;38.5;6.6)	6	3	110 кВ	Сек II 35 кВ	6 кВ
			Советско-		Алексан
ТДТН-63000/110			Соснин Сек I	Алексан НПС	НПСТ1 Сек II
(115;38.5;6.6)	6	3	110 кВ	Сек I 35 кВ	6 кВ
ТДТН-16000/110			Малореченска	Малореченска	Малореченска
(115;38.5:6.6)	6	3	я Сек I 110 кВ	я Сек I 35 кВ	я Сек I 6 кВ
× , , , , , , , , , , , , , , , , , , ,			Малореченска		-
ТДТН-16000/110			я Сек II 110	Малореченска	Малореченска
(115;38.5:11)	5	3	кВ	я Сек II 35 кВ	я Сек II 10 кВ
ТДТН-25000/110			Алексанлровс		Алексанлровс
(115:38.5:11)	9	1	кая Сек I 110	-	кая Сек I 10
(,,,	-	1			

			кВ		кВ
			Александровс		Александровс
ТДТН-25000/110			кая Сек II 110		кая Сек II 10
(115;38.5;11)	8	1	кВ	-	кВ
ТДТН-25000/110			Катыльгинска	Катыльгинска	Катыльгинска
(115;38.5;6.6)	5	3	я Сек I 110 кВ	я Сек I 35 кВ	я Сек I 6 кВ
			Катыльгинска		
ТДТН-25000/110			я Сек II 110	Катыльгинска	Катыльгинска
(115;38.5;6.6)	5	3	кВ	я Сек II 35 кВ	я Сек II 6 кВ
ТДТН-25000/110			Первомайское	Первомайское	Первомайское
(115;38.5;6.6)	5	3	Сек I 110 кВ	Сек I 35 кВ	Сек I 6 кВ
ТДТН-25000/110			Первомайское	Первомайское	Первомайское
(115;38.5;6.6)	5	3	Сек II 110 кВ	Сек II 35 кВ	Сек II 6 кВ
TMTH-6300/110			Ломовая Сек I		Ломовая Сек I
(115;38.5;6.6)	5	1	110 кВ	-	6 кВ
TMTH-6300/110			Ломовая Сек		Ломовая Сек
(115;38.5;6.6)	5	1	II 110 кВ	-	II 6 кВ
ТРДН-32000/220			Завьялово Сек	Завьялово Сек	Завьялово Сек
(230;11;11)	-	6	I 220 кВ	I 10кB	I 10кB
ТРДН-25000/110			Раздольное	Раздольное	Раздольное
(115;10.5;10.5)	-	8	Сек I 110 кВ	Сек I 10 кВ	Сек I 10 кВ
ТРДН-25000/110			Раздольное	Раздольное	Раздольное
(115;10.5;10.5)	-	8	Сек II 110 кВ	Сек II 10 кВ	Сек II 10 кВ
ТРДН-32000/220			Раскино Сек I	Раскино Сек I	Раскино Сек I
(230;11;11)	-	7	220 кВ	10кВ	10кВ
ТРДН-32000/220			Раскино Сек II	Раскино Сек II	Раскино Сек II
(230;11;11)	-	7	220 кВ	10 кВ	10 кВ

Результаты нормального режима максимальной нагрузки после регулирования проблемных узлов сведены в таблицу 1.8.

Таблица 1.8 – Расчетные данные максимальных нагрузок после

регулирования

						=			
N	Название	U, ĸB	Delta, rp	Uжел, кВ	d U, %	Р, кВт	Q, кBAp	Re Y, мкСм	Im Y, мкСм
32	Первомайское Сек II 6 кВ	5,93	-15,37	6,00	-1,12	990,00	715,00	0	0
33	Первомайское Сек II 35 кВ	34,66	-15,22	35,00	-0,97	3971,25	2333,25	0	0
34	Александровская Сек II 10 кВ	10,15	-12,61	10,00	1,55	6800,00	4200,00	0	0
35	Малореченская Сек II 10 кВ	9,97	-10,10	10,00	-0,34	102,63	62,62	0	0
36	Малореченская Сек II 35 кВ	34,89	-10,07	35,00	-0,33	475,83	290,32	0	0
37	Завьялово СекII 10 кВ	10,12	-3,88	10,00	1,16	675,00	573,75	0	0
38	Каргасок Сек I 10кВ	10,09	-4,20	10,00	0,90	900,00	760,00	0	0
39	Катыльгинская Сек I 6 кВ	5,96	-15,35	6,00	-0,71	1052,15	651,75	0	0
40	Завьялово Сек I 10кВ	10,12	-3,88	10,00	1,16	825,00	701,25	0	0
41	Катыльгинская Сек I 35 кВ	34,79	-15,19	35,00	-0,59	4207,50	2607,00	0	C
42	Первомайское Сек I 6 кВ	5,92	-15,53	6,00	-1,34	810,00	585,00	0	C

43	Александровская Сек I 10 кВ	10,07	-14,37	10,00	0,67	10625,00	6535,00	0	0
44	Малореченская Сек I 6 кВ	6,06	-10,16	6,00	0,93	83,97	51,23	0	0
46	Катыльгинская Сек II 6 кВ	5,98	-15,08	6,00	-0,39	860,85	533,25	0	0
47	Катыльгинская Сек II 35 кВ	34,90	-14,95	35,00	-0,29	3442,50	2133,00	0	0
48	Первомайское Сек I 35 кВ	34,56	-15,41	35,00	-1,25	4853,75	2851,75	0	0
49	Раздольное Сек I 10 кВ	10,01	-10,23	10,00	0,15	4781,25	2963,25	0	0
52	Малореченская Сек I 35 кВ	35,33	-10,14	35,00	0,93	581,57	354,83	0	0
55	Ломовая Сек II 6 кВ	5,91	-14,82	6,00	-1,46	1466,85	912,45	0	0
56	Вертикос Сек I 10кВ	9,98	-4,20	10,00	-0,21	1825,00	701,25	0	0
57	Вертикос Сек II 10кВ	9,99	-3,83	10,00	-0,12	675,00	573,75	0	0
59	Раздольное Сек II 10 кВ	10,00	-10,36	10,00	-0,01	5843,75	3621,75	0	0
64	Ломовая Сек I 6 кВ	5,95	-14,40	6,00	-0,88	1200,15	746,55	0	0
65	Раздольное Сек I 110 кВ	114,35	-9,66	110,00	3,96	0	0	0	0
66	Стрежевое Сек II 10 кВ	9,97	-4,30	10,00	-0,34	945,00	585,00	0	0
69	Раскино Сек II 10 кВ	10,10	-4,17	10,00	1,03	7480,00	4635,95	0	0
71	Стрежевое Сек II 35 кВ	34,91	-4,15	35,00	-0,24	4675,00	2915,00	0	0
74	Раздольное Сек II 110 кВ	114,35	-9,66	110,00	3,96	0	0	0	0
75	Алексан НПСТ1 Сек II 6 кВ	6,05	-3,66	6,00	0,86	825,00	701,25	0	0
76	Алексан НПС Сек I 35 кВ	35,32	-3,59	35,00	0,91	11781,00	7301,25	0	0
77	Стрежевое Сек I 10 кВ	10,10	-4,23	10,00	0,98	1155,00	715,00	0	0
78	Стрежевое Сек I 35 кВ	35,40	-4,04	35,00	1,14	3825,00	2385,00	0	0
81	Раскино Сек I 10кВ	10,12	-4,02	10,00	1,21	6120,00	3793,05	0	0
84	Чапаевка Сек I 110 кВ	115,43	-9,37	110,00	4,94	0	0	0	0
88	Алексан НПСТ2 Сек II 6 кВ	6,07	-3,42	6,00	1,16	675,00	573,75	0	0
89	Алексан НПС Сек II 35 кВ	35,42	-3,36	35,00	1,19	9639,00	5973,75	0	0
92	Чапаевка Сек II 110 кВ	115,43	-9,37	110,00	4,94	0	0	0	0

По результатам произведенного регулирования можно отметить, что при помощи РПН трансформаторов, установленных на подстанциях, удалось добиться желаемых уровней напряжения, следовательно, режим можно считать входящим в допустимую область.

На рисунке 1.2 изображена исследуемая схема с результатами расчета максимального режима после регулирования напряжения.

20

1.2.2. Расчет режима минимальных нагрузок

Для расчета режима минимальных нагрузок был принят коэффициент использования нагрузок равным 0,9, поскольку в схему входят нагрузки нефтедобывающих предприятий (месторождения): P_{нагр.min} = 0,9 · P_{нагр.max}.

Введение параметров в допустимую область сводится к регулировке напряжения на подстанциях. Допустимое отклонение напряжения на шинах потребителя в минимальном режиме в большую или меньшую сторону: 10% от номинального напряжения, ток в линии не должен превышать допустимых значений.

В таблице 1.9 представлены параметры расчета режима минимальных нагрузок до регулирования напряжения.

Таблица 1.9 – Параметры расчета режима минимальных нагрузок

до регулирования

Параметры расчёта	
Число итераций	22
Количество контуров в схеме	11
Достигнутая точность по напряжениям	0.10 кВ
Достигнутая точность по фазовым углам	0.03 ° (задано 0.1 °)
Максимальная величина небаланса мощности	0,03 MBT
Способ учёта нагрузки	
Режим максимальных нагрузок	
Отбор мощности	
Мощность балансирующих узлов	
Активная мощность Рб.у.	124738,24 кВт
Реактивная мощность Qб.у.	-46372,40 кВАр
Потери в линиях электропередачи	
Потери активной мощности dРл	3098,20 кВт
Потери реактивной мощности dQл	7028,43 кВАр
Потери на корону dРкор	0 кВт
Генерация линий dQc	-130954,12 кВАр
Потери в трансформаторах	
Потери активной мощности dРт	457,82 кВт
Потери реактивной мощности dQт	12706,86 кВАр
Активные потери холостого хода dPxx	686,92 кВт
Реактивные потери холостого хода dQxx	4007,02 кВАр
Суммарные потери в сети	
Потери активной мощности dРсумм	4242,93 кВт (3,41 %)
Потери реактивной мощности dQсумм	-107211,81 кВАр
Мощность нагрузок	

Активная мощность Рсумм	120360,60 кВт	
Реактивная мощность Qсумм	85633,72 кВАр	

По результатам расчета были выявлены проблемные узлы, требующие

регулировки напряжения. Они сведены в таблицу 1.10.

	<u></u>	
13011113 + 10 - P3CUETHLE	παμμωε πηροπερικών ναπ	ов по регупирования
	данные проолемных узл	ов до рогулирования
	1 2	

N	Название	U, ĸB	Delta, гр	Uжел, кВ	dU, %	Р, кВт	Q, кВАр	Re Y, мкСм	Im Y, мкСм
88	Чапаевка Сек I 110 кВ	115,83	-8,42	110,00	5,30	0	0	0	0
71	Чапаевка Сек II 110 кВ	115,83	-8,42	110,00	5,30	0	0	0	0
42	Александровская Сек II 10 кВ	10,25	-11,31	10,00	2,51	6120,00	3780,00	0	0

Для введения напряжения в допустимую область было использовано

РПН трансформаторов.

Таблица 1.11 – Степени свободы для введения в допустимую область

Марка					
трансформатора/	Степень	Степень			
автотрансформато	свободы	свободы			
ра	(РПв)	(РПс)	Узел ВН	Узел СН	Узел НН
АТДЦТН-					
63000/220/110			Чапаевка Сек	Чапаевка Сек	Чапаевка Сек
(230;121;11)	-	9	I 220 кВ	I 110 кВ	I 10 кВ

В результате регулирования был произведен расчет, параметры которого представлены в таблице 1.12.

Таблица 1.12 – Параметры расчета режима минимальных нагрузок

после регулирования

Параметры расчёта	
Число итераций	21
Количество контуров в схеме	11
Достигнутая точность по напряжениям	0,10 кВ
Достигнутая точность по фазовым углам	0,02 ° (задано 0,1 °)
Максимальная величина небаланса мощности	0,04 МВт
Способ учёта нагрузки	
Режим максимальных нагрузок	
Отбор мощности	
Мощность балансирующих узлов	
Активная мощность Рб.у.	125075,60 кВт
Реактивная мощность Qб.у.	-50422,45 кВАр
Потери в линиях электропередачи	

Потери активной мощности dPл	3436,12 кВт
Потери реактивной мощности dQл	7625,09 кВАр
Потери на корону dРкор	0 кВт
Генерация линий dQc	-130897,28 кВАр
Потери в трансформаторах	
Потери активной мощности dРт	461,50 кВт
Потери реактивной мощности dQт	12822,59 кВАр
Активные потери холостого хода dРхх	684,24 кВт
Реактивные потери холостого хода dQxx	3989,27 кВАр
Суммарные потери в сети	
Потери активной мощности dРсумм	4581,86 кВт (3,67 %)
Потери реактивной мощности dQсумм	-106460,33 кВАр
Мощность нагрузок	
Активная мощность Рсумм	120360,60 кВт
Реактивная мощность Qсумм	79707,31 кВАр

В таблице 1.13 представлены результаты регулирования напряжения в проблемных узлах.

Таблица 1.13 – Расчетные данные проблемных узлов после регулирования

N	Название	U, ĸB	Delta, гр	Uжел, кВ	dU, %	Р, кВт	Q, кВАр	Re Y, мкСм	Im Y, мкСм
83	Чапаевка Сек I 110 кВ	114,60	-8,43	110,00	4,18	0	0	0	0
71	Чапаевка Сек II 110 кВ	114,60	-8,43	110,00	4,18	0	0	0	0
42	Александровская Сек II 10 кВ	10,13	-11,39	10,00	1,31	6120,00	3780,00	0	0

Таким образом, при помощи РПН трансформаторов удалось добиться желаемых уровней напряжения, следовательно, режим можно считать входящим в допустимую область. На рисунке 1.3 изображена исследуемая схема с результатами расчета минимального режима после регулирования напряжения.

Вывод по разделу 2:

Для исследуемой схемы Томской энергосистемы северной части были рассчитаны и введены в допустимую область по напряжению режимы работы максимальной и минимальной нагрузки.

По результатам расчета каждого режима были выявлены проблемные узлы, напряжения которых в последствии были введены в допустимую область отклонения от U_{жел}. Ввод параметров в допустимую область был осуществлен с помощью РПН трансформаторов и автотрансформаторов.

1.3. Расчет послеаварийного режима максимальных нагрузок объединенной сети

Послеаварийные режимы представляют собой режимы, в которых некоторые линии или трансформаторы были отключены в результате аварии или вывода в ремонт.

Для моделирования и дальнейшего ввода в допустимую область послеаварийного режима были произведены отключения автотрансформаторов, трансформаторов и ЛЭП.

1.3.1. Отключение двух автотрансформаторов на ПС «Советско-Соснинская»

Было произведено моделирование послеаварийного режима, когда один из автотрансформаторов на ПС Советско-Соснинская находится в ремонте, а второй отключается в результате аварии. Отключены автотрансформаторы T4, T5.

На рисунке 4 изображена часть схемы, в которую входит ПС «Советско-Соснинская» с отключенными автотрансформаторами.

Рисунок 1.4 – Послеаварийный режим 1 до регулирования

Параметры расчета исследуемого режима представлены в таблице 1.14.

Таблица 1.14 – Параметры расчета послеаварийного режима №1

Параметры расчёта	
	22
Число итераций	22
Количество контуров в схеме	9
Достигнутая точность по напряжениям	0,09 кВ (задано 0,1 кВ)
Достигнутая точность по фазовым углам	0,02 ° (задано 0,1 °)
Максимальная величина небаланса мощности	0,02 MBT
Способ учёта нагрузки	
Режим максимальных нагрузок	
Отбор мошности	
Мощность балансирующих узлов	
Активная мощность Рб.у.	139210,41 кВт
Реактивная мощность Qб.у.	-28503,01 кВАр
Потери в линиях электроперелачи	
Потери активной мощности dРл	3912,68 кВт
Потери реактивной мощности dQл	8421,12 кВАр
Потери на корону dРкор	0 кВт
Генерация линий dQc	-128707,97 кВАр
Потери в трансформаторах	
	720 17 D
Потери активной мощности dPT	/38,1/ KBT
Потери реактивной мощности аQT	23807,29 KBAp
	058,50 KBT
Реактивные потери холостого хода аQXX	3830,70 квАр
Суммарные потери в сети	
Потери активной мошности dРсумм	5309 41 KBT (3 82 %)
Потери истивной мощности сумм	-92648 86 kBAn
noreph peakinghion wonghoern ageyma	2010,00 kB/ip
Мощность нагрузок	
Активная мощность Рсумм	133734,00 кВт
Реактивная мощность Осумм	88746,21 кВАр

В таблице 1.15 представлены проблемные узлы по напряжению.

N	Царраниа	II "D	Delta,	Uжел,	ALT 0/	D viDm	O vDAn	Re Y,	Im Y,
IN	пазвание	О, КВ	гр	кВ	aU, %	Р, КВТ	Q, к р ар	мкСм	мкСм
62	Стрежевое Сек I 10 кВ	9,54	-9,61	10,00	-4,60	1155,00	715,00	0	0
63	Стрежевое Сек I 35 кВ	33,45	-9,40	35,00	-4,43	3825,00	2385,00	0	0
64	Вахская Сек I 6 кВ	5,58	-12,51	6,00	-7,03	2125,00	1317,00	0	0
65	Вахская Сек I 35 кВ	32,65	-12,09	35,00	-6,72	8500,00	5268,00	0	0
71	Алексан НПСТ2 Сек II 6 кВ	5,75	-8,72	6,00	-4,17	675,00	573,75	0	0
72	Стрежевое Сек II 10 кВ	9,27	-9,69	10,00	-7,34	945,00	585,00	0	0
73	Вахская Сек III 35 кВ	32,97	-13,73	35,00	-5,80	6800,00	4214,00	0	0
74	Алексан НПС Сек II 35 кВ	33,55	-8,65	35,00	-4,13	9639,00	5973,75	0	0

Таблица 1.15 – Результаты расчета послеаварийного режима №1

76	Вахская Сек I 110 кВ	103,55	-8,77	110,00	-5,86	0	0	2,16	-13,23
77	Вахская Сек II 6 кВ	5,64	-11,90	6,00	-6,07	1360,00	843,00	0	0
78	Стрежевое Сек II 35 кВ	32,47	-9,53	35,00	-7,24	4675,00	2915,00	0	0
82	Вахская Сек II 35 кВ	32,97	-11,50	35,00	-5,80	5440,00	3371,00	0	0
83	Алексан НПСТ1 Сек II 6 кВ	5,73	-8,98	6,00	-4,48	825,00	701,25	0	0
84	Алексан НПС Сек I 35 кВ	33,45	-8,91	35,00	-4,43	11781,00	7301,25	0	0
90	Советско-Соснин Сек II 110 кВ	108,85	-7,54	115,00	-5,35	0	0	0	0
93	Советско-Соснин Сек I 110 кВ	108,85	-7,54	115,00	-5,35	0	0	0	0

Для ввода параметров в допустимую область было произведено регулирование уровней напряжения на шинах потребителя путем изменения коэффициентов трансформации (таблица 1.16).

Марка					
трансформатора/	Степень	Степень			
автотрансформато	свободы	свободы			
ра	(РПв)	(РПс)	Узел ВН	Узел СН	Узел НН
АТДЦТН-			Советско-	Советско-	
63000/220/110			Соснинск	Соснин Сек І	
(230;121;6.6)	-	4	СекІ 220кВ	110 кВ	-
АТДЦТН-					
63000/220/110			Чапаевка Сек	Чапаевка Сек	Чапаевка Сек
(230;121;11)	-	9	I 220 кВ	I 110 кВ	I 10 кВ
ТДТН-10000/110			Вахская Сек	Вахская Сек	
(115;38.5;6.6)	12	4	III 110 кВ	III 35 кВ	-
ТДТН-16000/110			Вахская Сек II	Вахская Сек II	Вахская Сек II
(115;38.5;6.6)	10	3	110 кВ	35 кВ	6 кВ
ТДТН-25000/110			Вахская Сек I	Вахская Сек I	Вахская Сек I
(115;38.5;6.6)	11	3	110 кВ	35 кВ	6 кВ
ТДТН-25000/110			Стрежевое	Стрежевое	Стрежевое
(115;38.5;11)	8	3	Сек II 110 кВ	Сек II 35 кВ	Сек II 10 кВ
			Советско-		Алексан
ТДТН-63000/110			Соснин Сек І	Алексан НПС	НПСТ1 Сек II
(115;38.5;6.6)	6	2	110 кВ	Сек I 35 кВ	6 кВ

Таблица 1.16 – Степени свободы для введения в допустимую область

Результаты расчета после проведения регулирования напряжения представлены в таблице 1.17 и 1.18.

Таблица 1.17 – Параметры расчета (после регулирования)

Число итераций 20 Количество контуров в схеме 9 Доститнутая точность по напряжениям 0,08 кВ (задано 0,1 кВ) Доститнутая точность по фазовым углам 0,06 МВт Максимальная величина небаланса мощности 0,06 МВт Способ учёта нагрузки Режим максимальных нагрузок 0,06 МВт Отбор мощность Мощность балансирующих узлов Активная мощность бб.у. 140441,93 кВт Реактивная мощность Об.у. -34199,61 кВАр Потери в линиях электропередачи 10 Потери в линиях электропередачи 9 Потери в линиях электропередачи 0 Потери в активной мощности dPл 4253,59 кВт Потери рактивной мощности dPл 9056,50 кВАр Потери в трансформаторах 0 Потери в трансформаторах 719,79 кВт Потери рактивной мощности dPr 719,79 кВт Потери в трансформаторах 674,10 кВт Реактивные потери холостого хода dРхх 674,10 кВт Активные потери колостого хода dРхх 6547,48 кВт (4,03 %) Потери реактивной мощности dQcy -93330,74 кВАр	Параметры расчёта	
Потери во портуров в схеме 9 Достигнутая точность по фазовым углам 0,08 кВ (задано 0,1 кВ) Достигнутая точность по фазовым углам 0,04 ° (задано 0,1 °) Максимальная величина небаланса мощности 0,06 МВт Способ учёта нагрузки Режим максимальных нагрузок 0,06 МВт Отбор мощность 65,9 Активная мощность бл. 140441,93 кВт Реактивная мощность Сб.у. -34199,61 кВАр Потери в линиях электронередачи 10 Потери в линиях электронередачи 9056,50 кВАр Потери в линиях электронередачи 9056,50 кВАр Потери в линиях электронередачи 10 Потери в активной мощности dPл 4253,59 кВт Гогери реактивной мощности dPл 23490,15 кВАр Потери в крансформаторах 10 Потери реактивной мощности dPr 719,79 кВт Потери реактивной мощности dPr 23490,15 кВАр Активные потери холостого хода dPxx 674,10 кВт Реактивные потери колостого хода dQxx 3927,91 кВАр Суммарные потери в сети 10 Потери реактивной мощности dQcyмм -93330,74 кВАр <th>Число итераций</th> <th>20</th>	Число итераций	20
Достигнутая точность по напряжениям 0,08 кВ (задано 0,1 кВ) Достигнутая точность по фазовым углам 0,06 «В (задано 0,1 °) Максимальная величина небаланса мощности 0,06 МВт Способ учёта нагрузки Режим максимальных нагрузок 0,06 МВт Отбор мощности 0,06 МВт Мощность балансирующих узлов 40441,93 кВт Активная мощность Об.у. -34199,61 кВАр Потери в линиях электропередачи 4253,59 кВт Потери рактивной мощности dPл 4253,59 кВт Потери рактивной мощности dPл 4253,59 кВт Потери рактивной мощности dPл 23400,50 кВАр Потери в линия сорону dPcop 0 кВт Генерация линий dQc -129805,29 кВАр Потери в трансформаторах 719,79 кВт Потери рактивной мощности dPr 719,79 кВт Потери рактивной мощности dPr 23490,15 кВАр Сумарные потери холостого хода dPxx 674,10 кВт Реактивной мощности dQcy -93330,74 кВАр Кощность нагрузок 34598,00 кВт Активная мощность Qcyмм -93330,74 кВАр Мощность генераторов 83906,00 кВАр	Количество контуров в схеме	9
Достигнутая точность по фазовым углам 0,04 ° (задано 0,1 °) Максимальная величина небаланса мощности 0,06 MBr Способ учёта нагрузки Режим максимальных нагрузок 0,06 MBr Отбор мощность Валансирующих узлов Активная мощность балансирующих узлов 140441,93 кВт Режим максимальных нагрузок -34199,61 кВАр Потери в линиях электропередачи 10тери в линиях электропередачи Потери в активной мощности dPл 4253,59 кВт Потери в активной мощности dPл 9056,50 кВАр Потери в трансформаторах 0 кВт Потери в трансформаторах 719,79 кВт Потери в трансформаторах 674,10 кВт Потери вактивной мощности dPr 23490,15 кВАр Активные потери холостого хода dQxx 3927,91 кВАр Суммарные потери в сети 5647,48 кВт (4,03 %) Потери реактивной мощности dPcyмм 5647,48 кВт (4,03 %) Потери реактивной мощности dQcym -93330,74 кВАр Мощность Рсумм 134598,00 кВт Реактивная мощность Сеум 83906,00 кВАр Мощность Стераторов 0 кВт Активная мощность Осеум 134598,00 кВАр	Лостигнутая точность по напряжениям	0.08 кВ (задано 0.1 кВ)
Максимальная величина небаланса мощности 0,06 MBr Способ учёта нагрузки Режим максимальных нагрузок Олбор мощности Мошность балансирующих узлов Активная мощность Q6.у. 140441,93 кВт Реактивная мощность Q6.у. -34199,61 кВАр Потери в линиях электропередачи Потери рактивной мощности dPл 4253,59 кВт Потери рактивной мощности dPл 9056,50 кВАр Потери в трансформаторах Потери в трансформаторах Потери в трансформаторах Потери в опери колостого хода dPxx 674,10 кВт Реактивной мощности dQr 23490,15 кВАр Активные потери холостого хода dPxx 5647,48 кВт (4,03 %) Ротери рактивной мощности dQcym -93330,74 кВАр Кощность нагрузок Активная мощность Qcym 134598,00 кВт Потери рактивной мощности dQcym 83906,00 кВАр Мошность свераторов Активная мощность Qcym 83906,00 кВАр Реактивная мощность Среум 0 кВт	Достигнутая точность по фазовым углам	0.04 ° (задано 0.1 °)
Способ учёта нагрузки Режим максимальных нагрузок Отбор мощности Мощность балансирующих узлов Активная мощность Рб.у. 140441,93 кВт Реактивная мощность Qб.у34199,61 кВАр Потери в линиях электропередачи Потери в линиях электропередачи Потери в линиях электропередачи Потери вактивной мощности dPл 4253,59 кВт Потери реактивной мощности dPл 0 кВг Генерация линий dQc -129805,29 кВАр Потери в трансформаторах Потери в трансформаторах Потери в трансформаторах Потери реактивной мощности dPт 719,79 кВт Потери реактивной мощности dQr 23490,15 кВАр Активные потери холостого хода dPхх 674,10 кВт Реактивные потери холостого хода dQхх 3927,91 кВАр Суммарные потери в сети Потери рактивной мощности dQeyм 5647,48 кВт (4,03 %) Потери реактивной мощности dQeym 2330,74 кВАр Мощность нагрузок Активная мощность Реумм 134598,00 кВт Реактивная мощность Среум 0 кВт Реактивная мощность Оген, сумм 0 кВт	Максимальная величина небаланса мощности	0,06 MBT
Способ учёта нагрузки Режим максимальных нагрузок Отбор мощности Мощность балансирующих узлов Активная мощность Рб.у. 140441,93 кВт Реактивная мощность Qб.у34199,61 кВАр Потери в линиях электропередачи Потери в линиях электропередачи Потери в линиях электропередачи Потери в линиях электропередачи Потери в активной мощности dPл 4253,59 кВт Потери реактивной мощности dPл 0056,50 кВАр Потери в корону dPкор 0 кВт Генерация линий dQc -129805,29 кВАр Потери в трансформаторах Потери в трансформаторах Потери реактивной мощности dPr 719,79 кВт Потери реактивной мощности dPr 23490,15 кВАр Активные потери холостого хода dPxx 674,10 кВт Реактивные потери холостого хода dPxx 3927,91 кВАр Суммарные потери в сети Потери рактивной мощности dQeym 5647,48 кВт (4,03 %) Потери реактивной мощности dQeym -93330,74 кВАр Мощность нагрузок Активная мощность Peym 134598,00 кВт Реактивная мощность Qeym 0 кВт Реактивная мощность Preн. сумм 0 кВт Реактивная мощность Preн. сумм 0 кВт		
Режим максимальных нагрузок Отбор мощность Мощность балансирующих узлов Активная мощность Об.у. 140441,93 кВт Реактивная мощность Об.у. -34199,61 кВАр Потери в линиях электропередачи 1 Потери в линиях электропередачи 1 Потери в линиях электропередачи 4253,59 кВт Потери в линиях электропередачи 0 Потери в линиях электропередачи 1 Потери в ктивной мощности dPл 4253,59 кВт Потери реактивной мощности dQл 9056,50 кВАр Потери в трансформаторах 0 кВт Потери в трансформаторах 719,79 кВт Потери реактивной мощности dPr 719,79 кВт Потери реактивной мощности dQr 23490,15 кВАр Активные потери холостого хода dPxx 674,10 кВт Реактивной мощности dPcym 5647,48 кВт (4,03 %) Потери реактивной мощности dPcym -93330,74 кВАр Мощность нагрузок 134598,00 кВт Ре	Способ учёта нагрузки	
Отбор мощность Мощность балансирующих узлов Активная мощность Рб.у. 140441,93 кВт Реактивная мощность Qб.у. -34199,61 кВАр Потери в линиях электропередачи 1 Потери в линиях электропередачи 4253,59 кВт Потери реактивной мощности dPл 4253,59 кВт Потери реактивной мощности dQл 9056,50 кВАр Потери в трансформаторах 0 кВт Потери в трансформаторах 719,79 кВт Потери в трансформаторах 74,10 кВт Реактивной мощности dPT 719,79 кВт Потери в стивной мощности dPT 23490,15 кВАр Активные потери холостого хода dPxx 674,10 кВт Реактивные потери холостого хода dQxx 3927,91 кВАр Суммарные потери в сети 10 Потери в ктивной мощности dPcyмм 5647,48 кВт (4,03 %) Потери реактивной мощности dQcyмм -93330,74 кВАр Мощность нагрузок 134598,00 кВт Активная мощность Qcyмм 83906,00 кВт Реактивная мощность Qcyмм 83906,00 кВАр Мощность генераторов 0 кВт Активная мощность Preн. сумм 0 кВт	Режим максимальных нагрузок	
Мощность балансирующих узлов Активная мощность Рб.у. 140441,93 кВт Реактивная мощность Qб.у. -34199,61 кВАр Потери в линиях электропередачи 1 Потери в линиях электропередачи 4253,59 кВт Потери в ктивной мощности dPл 4253,59 кВт Потери в активной мощности dPл 9056,50 кВАр Потери в трансформаторах 0 кВт Генерация линий dQc -129805,29 кВАр Потери в трансформаторах 719,79 кВт Потери в ктивной мощности dPr 719,79 кВт Потери в ктивной мощности dPr 23490,15 кВАр Активные потери холостого хода dPxx 674,10 кВт Реактивные потери холостого хода dQxx 3927,91 кВАр Суммарные потери в сети 1 Потери активной мощности dPcymm 5647,48 кВт (4,03 %) Потери реактивной мощности dQcymm -93330,74 кВАр Мощность нагрузок 134598,00 кВт Реактивная мощность Qcymm 83906,00 кВАр Мощность генераторов 134598,00 кВт Активная мощность Qcymm 134598,00 кВт Реактивная мощность Preн, сумm 0 кВт Реакт	Отбор мощности	
Активная мощность Рб.у. 140441,93 кВт Реактивная мощность Qб.у. -34199,61 кВАр Потери в линиях электропередачи 1 Потери активной мощности dPл 4253,59 кВт Потери в корону dPкор 0 кВт Генерация линий dQc -129805,29 кВАр Потери в трансформаторах 719,79 кВт Потери в ктивной мощности dPr 719,79 кВт Потери в ктивной мощности dPr 23490,15 кВАр Активные потери холостого хода dPxx 674,10 кВт Реактивные потери в сети 5647,48 кВт (4,03 %) Потери рактивной мощности dPcyмм 8547,48 кВт (4,03 %) Потери рактивной мощности dPcyмм 8547,48 кВт (4,03 %) Потери рактивной мощности dPcym 93330,74 кВАр Мощность нагрузок 134598,00 кВт Активная мощность Qcym 83906,00 кВАр Мощность генераторов 1930,82 кВАр	Мощность балансирующих узлов	
Реактивная мощность Qб.у. -34199,61 кВАр Потери в линиях электропередачи Потери вкивной мощности dPл 4253,59 кВт Потери рактивной мощности dQл 9056,50 кВАр Потери в корону dPkop 0 кВт Генерация линий dQc -129805,29 кВАр Потери в трансформаторах 719,79 кВт Потери в ктивной мощности dPr 719,79 кВт Потери рактивной мощности dPr 23490,15 кВАр Активные потери холостого хода dPxx 674,10 кВт Реактивные потери холостого хода dQxx 3927,91 кВАр Суммарные потери в сети 10 Потери рактивной мощности dPcymm 5647,48 кВт (4,03 %) Потери рактивной мощности dPcymm -93330,74 кВАр Мощность нагрузок 134598,00 кВт Активная мощность Qcymm 83906,00 кВАр Мощность генераторов Активная мощность Oren, сумм 0 кВт Реактивная мощность Oren, сумм 0 кВт	Активная мощность Рб.у.	140441,93 кВт
Потери в линиях электропередачи Потери активной мощности dPл 4253,59 кBr Потери реактивной мощности dQл 9056,50 кBAp Потери на корону dPкор 0 кBr Генерация линий dQc -129805,29 кBAp Потери в трансформаторах 719,79 кBr Потери в трансформаторах 719,79 кBr Потери реактивной мощности dPr 719,79 кBr Потери реактивной мощности dQr 23490,15 кBAp Активные потери холостого хода dPxx 674,10 кBr Реактивные потери холостого хода dQxx 3927,91 кBAp Суммарные потери в сети 10 Потери реактивной мощности dQcymm 5647,48 кBr (4,03 %) Потери реактивной мощности dQcymm -93330,74 кBAp Мощность нагрузок 134598,00 кBr Активная мощность Qcymm 83906,00 кBAp Мощность генераторов 0 кBr Активная мощность Preн. сумм 0 кBr	Реактивная мощность Qб.у.	-34199,61 кВАр
Потери в липих электропередати Потери в кливной мощности dPл 4253,59 кBT Потери реактивной мощности dQл 9056,50 кBAp Потери в корону dPкор 0 кBT Генерация линий dQc -129805,29 кBAp Потери в трансформаторах Потери в ктивной мощности dPT 719,79 кBT Потери реактивной мощности dPT 23490,15 кBAp Активные потери холостого хода dPxx 674,10 кBT Реактивные потери холостого хода dQxx 3927,91 кBAp Суммарные потери в сети Потери реактивной мощности dQcymm 5647,48 кBT (4,03 %) Потери реактивной мощности dQcymm -93330,74 кBAp Мощность нагрузок Активная мощность Рсумм 134598,00 кBT Реактивная мощность Qcymm 83906,00 кBAp Мощность генераторов Активная мощность Preн. сумм Активная мощность Oreн. сумм 0 кBT Реактивная мощность Oreн. сумм 0 кBT	Потери в днинах электронеродани	
Потери активной мощности dPл 4253,59 кBт Потери реактивной мощности dQл 9056,50 кBAp Потери на корону dPкор 0 кBT Генерация линий dQc -129805,29 кBAp Потери в трансформаторах Потери в трансформаторах 719,79 кBT Потери реактивной мощности dPr 719,79 кBT Потери реактивной мощности dPr 23490,15 кBAp Активные потери холостого хода dPxx 674,10 кBT Реактивные потери холостого хода dQxx 3927,91 кBAp Суммарные потери в сети Потери реактивной мощности dPcymm 5647,48 кBT (4,03 %) Потери реактивной мощности dQcymm -93330,74 кBAp Мощность нагрузок Активная мощность Pcymm 134598,00 кBT Реактивная мощность Qcymm 83906,00 кBAp Мощность генераторов 0 кBT Реактивная мощность Preн. сумм 0 кBT	потери в линиях электропередати	
Потери реактивной мощности dQл 9056,50 кВАр Потери на корону dPкор 0 кВт Генерация линий dQc -129805,29 кВАр Потери в трансформаторах -129805,29 кВАр Потери в трансформаторах -129805,29 кВАр Потери в ктивной мощности dPr 719,79 кВт Потери реактивной мощности dQr 23490,15 кВАр Активные потери холостого хода dPxx 674,10 кВт Реактивные потери холостого хода dQxx 3927,91 кВАр Суммарные потери в сети -93330,74 кВАр Потери реактивной мощности dPcyмм 5647,48 кВт (4,03 %) Потери реактивной мощности dQcym -93330,74 кВАр Мощность нагрузок -34598,00 кВт Активная мощность Qcym 83906,00 кВт Реактивная мощность Qreym 0 кВт Реактивная мощность Preн. сумм 0 кВт Реактивная мощность Preн. сумм 0 кВт	Потери активной мощности dРл	4253,59 кВт
Потери на корону dРкор 0 кВт Генерация линий dQc -129805,29 кВАр Потери в трансформаторах -129805,29 кВАр Потери в трансформаторах 719,79 кВт Потери реактивной мощности dPr 719,79 кВт Потери реактивной мощности dQr 23490,15 кВАр Активные потери холостого хода dPxx 674,10 кВт Реактивные потери холостого хода dQxx 3927,91 кВАр Суммарные потери в сети 5647,48 кВт (4,03 %) Потери реактивной мощности dPcyмм 5647,48 кВт (4,03 %) Потери реактивной мощности dQcyмм -93330,74 кВАр Мощность нагрузок 134598,00 кВт Активная мощность Qcyмм 83906,00 кВАр Мощность генераторов Кктивная мощность Preн. сумм О кВт 920,82 кВАр	Потери реактивной мощности dQл	9056,50 кВАр
Генерация линий dQc -129805,29 кВАр Потери в трансформаторах -129805,29 кВАр Потери в трансформаторах 719,79 кВт Потери реактивной мощности dPr 23490,15 кВАр Активные потери холостого хода dPxx 674,10 кВт Реактивные потери холостого хода dQxx 3927,91 кВАр Суммарные потери в сети -1000000000000000000000000000000000000	Потери на корону dРкор	0 кВт
Потери в трансформаторах Потери активной мощности dPr 719,79 кBr Потери реактивной мощности dQr 23490,15 кBAp Активные потери холостого хода dPxx 674,10 кBr Реактивные потери холостого хода dQxx 3927,91 кBAp Суммарные потери в сети Потери активной мощности dPcymm 5647,48 кBr (4,03 %) Потери реактивной мощности dQcymm -93330,74 кBAp Мощность нагрузок Активная мощность Pcymm 134598,00 кBr Реактивная мощность Qcymm 83906,00 кBAp Мощность генераторов Кктивная мощность Preн. сумм О кBr Реактивная мощность Oren, сумм	Генерация линий dQc	-129805,29 кВАр
Потери активной мощности dPr 719,79 кBr Потери реактивной мощности dQr 23490,15 кBAp Активные потери холостого хода dPxx 674,10 кBr Реактивные потери холостого хода dQxx 3927,91 кBAp Суммарные потери в сети Потери активной мощности dPcymm 5647,48 кBr (4,03 %) Потери реактивной мощности dPcymm 5647,48 кBr (4,03 %) Потери реактивной мощности dQcymm -93330,74 кBAp Мощность нагрузок 134598,00 кBr Реактивная мощность Qcymm 83906,00 кBAp Мощность генераторов 0 кBr Активная мощность Preн, сумм 0 кBr Реактивная мощность Oreн, сумм 0 кBr	Потери в трансформаторах	
Потери реактивной мощности dQr 23490,15 кВАр Активные потери холостого хода dPxx 674,10 кВт Реактивные потери холостого хода dQxx 3927,91 кВАр Суммарные потери в сети Потери активной мощности dPcyмм 5647,48 кВт (4,03 %) Потери реактивной мощности dPcyмм -93330,74 кВАр Мощность нагрузок 134598,00 кВт Реактивная мощность Qcymm 83906,00 кВт Реактивная мощность Preн. сумм 0 кВт Реактивная мощность Preн. сумм 0 кВт	Потери активной мошности dPт	719 79 кВт
Активные потери холостого хода dPxx 674,10 кBr Реактивные потери холостого хода dQxx 3927,91 кBAp Суммарные потери в сети Потери активной мощности dPcymm 5647,48 кBr (4,03 %) Потери реактивной мощности dQcymm -93330,74 кBAp Мощность нагрузок 134598,00 кBr Реактивная мощность Qcymm 83906,00 кBAp Мощность генераторов 0 кBr Реактивная мощность Oren, cymm 0 кBr	Потери реактивной мошности dOт	23490.15 кВАр
Реактивные потери холостого хода dQxx 3927,91 кВАр Суммарные потери в сети Потери активной мощности dPсумм 5647,48 кВт (4,03 %) Потери реактивной мощности dQсумм -93330,74 кВАр Мощность нагрузок Активная мощность Pсумм 134598,00 кВт Реактивная мощность Qсумм 83906,00 кВАр Мощность генераторов 0 кВт Активная мощность Preн. сумм 0 кВт	Активные потери холостого хода dРхх	674,10 кВт
Суммарные потери в сети Потери активной мощности dРсумм 5647,48 кВт (4,03 %) Потери реактивной мощности dQсумм -93330,74 кВАр Мощность нагрузок Активная мощность Рсумм 134598,00 кВт Реактивная мощность Qсумм 83906,00 кВАр Мощность генераторов Активная мощность Preн. сумм 0 кВт Реактивная мощность Preн. сумм 1930,82 кВАр	Реактивные потери холостого хода dQxx	3927,91 кВАр
Потери активной мощности dPcyмм 5647,48 кBr (4,03 %) Потери реактивной мощности dQcyмм -93330,74 кBAp Мощность нагрузок -93330,74 кBAp Активная мощность Pcymm 134598,00 кBr Реактивная мощность Qcymm 83906,00 кBAp Мощность генераторов 0 кBr Реактивная мощность Preн. сумм 0 кBr Реактивная мощность Oreн. сумм 1930.82 кBAp	Суммарные потери в сети	
Потери реактивной мощности dQcyмм -93330,74 кВАр Мощность нагрузок -93330,74 кВАр Активная мощность Рсумм 134598,00 кВт Реактивная мощность Qcymм 83906,00 кВАр Мощность генераторов 0 кВт Активная мощность Preн. сумм 0 кВт Реактивная мощность Oreн. сумм 1930,82 кВАр	Потери активной мощности феснам	5647 48 PBT (4 03 %)
Мощность нагрузок Активная мощность Рсумм 134598,00 кВт Реактивная мощность Qсумм 83906,00 кВАр Мощность генераторов 0 кВт Активная мощность Preн. сумм 0 кВт	Потери реактивной мощности d сумм	-93330,74 кВАр
Мощность нагрузок Активная мощность Рсумм 134598,00 кВт Реактивная мощность Qсумм 83906,00 кВАр Мощность генераторов О кВт Активная мощность Preн. сумм 0 кВт Реактивная мощность Oreн. сумм 1930.82 кВАр		
Активная мощность Рсумм 134598,00 кВт Реактивная мощность Qсумм 83906,00 кВАр Мощность генераторов 0 кВт Активная мощность Preн. сумм 0 кВт Реактивная мощность Qreн. сумм 1930.82 кВАр	Мощность нагрузок	
Реактивная мощность Qсумм 83906,00 кВАр Мощность генераторов 0 кВт Активная мощность Preн. сумм 0 кВт Реактивная мощность Oreн. сумм 1930.82 кВАр	Активная мощность Рсумм	134598,00 кВт
Мощность генераторов Активная мощность Рген. сумм 0 кВт Реактивная мощность Оген. сумм 1930.82 кВАр	Реактивная мощность Qсумм	83906,00 кВАр
Активная мощность Рген. сумм 0 кВт Реактивная мощность Оген. сумм 1930.82 кВАр	Мощность генераторов	
Реактивная мощность Оген. сумм 1930.82 кВАр	Активная мощность Рген. сумм	0 кВт
	Реактивная мощность Qген. сумм	1930,82 кВАр

Таблица 1.18 – Результаты расчета после регулирования

N	Название	U, кВ	Delta,	Uжел,	dU, %	Р, кВт	Q, кBAp	Re Y,	Im Y,
			Tp	KD				мксм	мксм
62	Стрежевое Сек I 10 кВ	9,99	-9,41	10,00	-0,09	1155,00	715,00	0	0
63	Стрежевое Сек I 35 кВ	35,02	-9,22	35,00	0,07	3825,00	2385,00	0	0
64	Вахская Сек I 6 кВ	6,09	-12,05	6,00	1,53	2125,00	1317,00	0	0
65	Вахская Сек I 35 кВ	35,64	-11,66	35,00	1,84	8500,00	5268,00	0	0
71	Алексан НПСТ2 Сек II 6 кВ	6,01	-8,58	6,00	0,13	675,00	573,75	0	0
72	Стрежевое Сек II 10 кВ	10,20	-9,48	10,00	2,00	945,00	585,00	0	0

73	Вахская Сек III 35 кВ	35,16	-13,15	35,00	0,45	6800,00	4214,00	0	0
74	Алексан НПС Сек II 35 кВ	35,06	-8,52	35,00	0,17	9639,00	5973,75	0	0
76	Вахская Сек I 110 кВ	108,63	-8,66	110,00	-1,24	0	0	2,16	-13,23
77	Вахская Сек II 6 кВ	6,13	-11,50	6,00	2,22	1360,00	843,00	0	0
78	Стрежевое Сек II 35 кВ	35,74	-9,33	35,00	2,10	4675,00	2915,00	0	0
82	Вахская Сек II 35 кВ	35,87	-11,14	35,00	2,49	5440,00	3371,00	0	0
83	Алексан НПСТ1 Сек II 6 кВ	5,99	-8,83	6,00	-0,16	825,00	701,25	0	0
84	Алексан НПС Сек I 35 кВ	35,83	-8,75	35,00	2,38	11781,00	7301,25	0	0
90	Советско-Соснин Сек II 110 кВ	113,60	-7,51	110,00	3,27	0	0	0	0
93	Советско-Соснин Сек I 110 кВ	113,60	-7,51	110,00	3,27	0	0	0	0

Таким образом, с помощью РПН удалось добиться ввода режима в допустимую область. На рисунке 1.5 изображена исследуемая часть схемы после регулирования.

Рисунок 1.5 – Послеаварийный режим 1 после регулирования

1.3.2. Отключение автотрансформатора на ПС «Чапаевка»

В данном случае моделируется аварийный выход из строя автотрансформатора Т1 на ПС «Чапаевка».

На рисунке 1.6 представлена часть схемы с исследуемым автотрансформатором.

Рисунок 1.6 – Послеаварийный режим 2 до регулирования

Введение параметров в допустимую область сводится к регулировке напряжения на подстанциях. Допустимое отклонение напряжения на шинах потребителя в большую или меньшую сторону: 2,5% от номинального напряжения, ток в линии не должен превышать допустимых значений.

Полученные в результате расчета данные сводим в таблицу 1.19.

Число итераций 22 Количество контуров в схеме 11 Достигнутая точность по фазовым углам 0,09 кВ (задано 0,1 кВ) Достигнутая точность по фазовым углам 0,02 ° (задано 0,1 °) Максимальная величина небаланса мощности 0,02 МВт Способ учёта нагрузки Режим максимальных нагрузок 0,02 МВт Отбор мощности 0,02 МВт Мощность балансирующих узлов Активная мощность Об.у. Активная мощность Qб.у. -38355,81 кВАр Режим максимальных нагрузок Отбор мощность Qб.у. Потери в линиях электропередачи 11 Потери в линиях электропередачи 0 Потери в прансформаторах 0 кВт Генерация линий dQc -130167,98 кВАр Потери в трансформаторах 582,24 кВт Потери в трансформаторах 680,79 кВт Реактивные потери холостого хода dPxx 680,79 кВт Реактивные потери колостого хода dQxx 3970,63 кВАр Суммарные нотери в сети 110гери в стивной мощности dQcym Потери реактивной мощности dQcym -100951,82 кВАр Мощность нагрузок 133734,00 кВт	Параметры расчёта	
Числю игерации 22 Количество контуров в схеме 11 Достигнутая точность по напряжениям 0,09 кВ (задано 0,1 кВ) Достигнутая точность по фазовым углам 0,02 ° (задано 0,1 °) Максимальная величина небаланса мощности 0,02 MBr Способ учёта нагрузки Режим максимальных нагрузок 0,02 MBr Отбор мощности 0,02 MBr Мощность балансирующих узлов 389077,18 кВт Активная мощность Рб.у. 138977,18 кВт Реактивной мощность Qб.у. -38355,81 кВАр Потери в линиях электропередачи 10 гери в линиях электропередачи Потери вактивной мощности dQn 8414,17 кВАр Потери в поцности dQn 8414,17 кВАр Готери реактивной мощности dQn 8413,37 кВАр Потери в трансформаторах 16831,37 кВАр Потери в стивной мощности dQr 16831,37 кВАр Активные потери холостого хода dPxx 680,79 кВг Реактивной мощности dQr 5159,74 кВт (3,71 %) Потери вактивной мощности dQcyм -100951,82 кВАр Иотери реактивной мощности dQcyм -100951,82 кВАр Мощность нагрузок	II	22
Потери во селеме 11 Достигнутая точность по напряжениям 0,09 кВ (задано 0,1 кВ) Достигнутая точность по фазовым углам 0,02 ° (задано 0,1 °) Максимальная величина небаланса мощности 0,02 МВт Способ учёта нагрузки Режим максимальных нагрузок 0,02 кВ (задано 0,1 кВ) Отбор мощность 0,02 МВт Активная мощность балансарующих узлов 138977,18 кВт Активная мощность Q6.у. -38355,81 кВАр Потери в линиях электропередачи 3896,71 кВт Потери в линиях электропередачи 8414,17 кВАр Потери в активной мощности dQn 8414,17 кВАр Потери в трансформаторах 680,79 кВАр Потери в отрансформаторах 582,24 кВт Потери реактивной мощности dQr 16831,37 кВАр Активные потери холостого хода dPxx 680,79 кВАр	Число итерации	11
Достигнутая точность по фазовым углам 0,02° (задано 0,1 кВ) Достигнутая точность по фазовым углам 0,02° (задано 0,1°) Максимальная величина небаланса мощности 0,02 МВт Способ учёта нагрузки Режим максимальных нагрузок 0,02 мВт Отбор мощность балансирующих узлов Активная мощность балансирующих узлов 138977,18 кВт Активная мощность Q6.у. -38355,81 кВАр Реактивной мощности dPл 3896,71 кВт Потери в линиях электропередачи 8414,17 кВАр Потери в линиях электропередачи 0 кВт Генерация линий dQc -130167,98 кВАр Иотери в трансформаторах 582,24 кВт Потери в трансформаторах 680,79 кВт Потери в олостого хода dPxx 680,79 кВт Реактивной мощности dPr 582,24 кВт Потери рактивной мощности dPr 582,24 кВт Потери рактивной мощности dPr 582,24 кВт Потери в трансформаторах 680,79 кВт Реактивные потери холостого хода dPxx 680,79 кВт Реактивной мощности dQr 1631,37 кВАр Активная мощности dPcymm 5159,74 кВт (3,71 %) Потери реактивной мощности dQcymm </td <td></td> <td>$\begin{array}{c} 11 \\ 0.00 \text{ vP} (\text{serveys} 0.1 \text{ vP}) \end{array}$</td>		$\begin{array}{c} 11 \\ 0.00 \text{ vP} (\text{serveys} 0.1 \text{ vP}) \end{array}$
Достипнутая точность по фазовым углам 0,02 - (задано 0,1 -) Максимальная величина небаланса мощности 0,02 MBr Способ учёта нагрузок Отбор мощность 0,02 MBr Режим максимальных нагрузок 0,02 мBr Отбор мощность 63,02 мBr Мощность балансирующих узлов 138977,18 кBT Режим максимальных нагрузок -38355,81 кBAp Отбор мощность Q6.у. -38355,81 кBAp Реактивная мощность Q6.у. -38355,81 кBAp Потери в линиях электропередачи 8414,17 кBAp Потери реактивной мощности dDn 8414,17 кBAp Потери в корону dPkop 0 кBr Генерация линий dQc -130167,98 кBAp Потери в трансформаторах 680,79 кBT Потери в трансформаторах 680,79 кBT Реактивной мощности dQr 16831,37 кBAp Активные потери холостого хода dPxx 680,79 кBT Реактивной мощности dQr 5159,74 кBr (3,71 %) Потери реактивной мощности dQeymm 5159,74 кBr (3,71 %) Потери реактивной мощности dQeymm -100951,82 кBAp Мощность нагрузок 133734,00 кBr Реактивная мощность Qeymm 133734,00 кBr <	Достигнутая точность по напряжениям	0.09 kB (3adaho 0,1 kB)
Максимальная величина неоаланса мощности 0,02 мвт Способ учёта нагрузки Режим максимальных нагрузок Отбор мощность Мощность балансирующих узлов Активная мощность Рб.у. 138977,18 кВт Реактивная мощность Об.у. -38355,81 кВАр Потери в линиях электропередачи 10тери в линиях электропередачи Потери в линиях электропередачи 8414,17 кВАр Потери в кливной мощности dPл 3896,71 кВт Потери в рактивной мощности dPл 3896,71 кВт Потери в трансформаторах 0 кВт Генерация линий dQc -130167,98 кВАр Потери в трансформаторах 582,24 кВт Потери в стивной мощности dPT 582,24 кВт Потери рактивной мощности dQT 16831,37 кВАр Активные потери холостого хода dPxx 680,79 кВт Реактивные потери холостого хода dQxx 3970,63 кВАр Суммарные потери в сети 5159,74 кВт (3,71 %) Потери реактивной мощности dPcyмм 5159,74 кВт (3,71 %) Потери реактивной мощности dQcyмм -100951,82 кВАр Мощность нагрузок 133734,00 кВт Реактивная мощность Рсумм 133734,00 кВт <th>Достигнутая точность по фазовым углам</th> <th>$0.02 \text{ (3адано 0,1 ^)}$</th>	Достигнутая точность по фазовым углам	$0.02 \text{ (3адано 0,1 ^)}$
Способ учёта нагрузки Режим максимальных нагрузок Отбор мощности Мощность балансирующих узлов Активная мощность Рб.у. 138977,18 кВт Реактивная мощность Qб.у38355,81 кВАр Потери в линиях электропередачи Потери в активной мощности dРл 3896,71 кВт Потери в ощности dРл 8414,17 кВАр Потери в трансформаторах Потери в трансформаторах Потери в трансформаторах Потери в ктивной мощности dPт 582,24 кВт Потери в трансформаторах Потери в ктивной мощности dPт 16831,37 кВАр Активные потери холостого хода dPxx 680,79 кВт Реактивные потери холостого хода dPxx 680,79 кВт Реактивные потери холостого хода dPxx 3970,63 кВАр Суммарные потери в сети Потери активной мощности dPcyмм 5159,74 кВт (3,71 %) Потери вактивной мощности dQcym -100951,82 кВАр Мощность нагрузок	максимальная величина неоаланса мощности	0,02 MBT
Режим максимальных нагрузок Отбор мощности Мощность балансирующих узлов Активная мощность Рб.у. 138977,18 кВт Реактивная мощность Рб.у. -38355,81 кВАр Потери в линиях электропередачи 10тери в линиях электропередачи Потери в линиях электропередачи 3896,71 кВт Потери в линиях электропередачи 3896,71 кВт Потери в ктивной мощности dPл 3896,71 кВт Потери в кактивной мощности dQл 8414,17 кВАр Потери в трансформаторах 0 кВт Генерация линий dQc -130167,98 кВАр Потери в трансформаторах 16831,37 кВАр Активные потери холостого хода dPxx 680,79 кВт Реактивные потери в сети 5159,74 кВт (3,71 %) Потери активной мощности dPcymm 5159,74 кВт (3,71 %) Потери реактивной мощности dPcymm 7100951,82 кВАр	Способ учёта нагрузки	
Отбор мощности Мощность балансирующих узлов Активная мощность Рб.у. 138977,18 кВт Реактивная мощность Об.у. -38355,81 кВАр Потери в линиях электропередачи Потери в линиях электропередачи Потери в линиях электропередачи 896,71 кВт Потери в линиях электропередачи 3896,71 кВт Потери в линиях электропередачи 0 кВт Потери в трансформаторах 0 кВт Генерация линий dQe -130167,98 кВАр Потери в трансформаторах 16831,37 кВАр Потери в ктивной мощности dPr 582,24 кВт Потери в оптери холостого хода dPxx 680,79 кВт Реактивные потери холостого хода dQxx 3970,63 кВАр Суммарные потери в сети 5159,74 кВт (3,71 %) Потери в кативной мощности dPcymm 5159,74 кВт (3,71 %) Потери реактивной мощности dPcymm 7100951,82 кВАр Мощность нагрузок 133734,00 кВт Реактивная мощность Qcymm 133734,00 кВт </th <th>Режим максимальных нагрузок</th> <th></th>	Режим максимальных нагрузок	
Мощность балансирующих узлов Активная мощность Рб.у. 138977,18 кВт Реактивная мощность Qб.у. -38355,81 кВАр Потери в линиях электропередачи 1000000000000000000000000000000000000	Отбор мощности	
Активная мощность Рб.у. 138977,18 кВт Реактивная мощность Qб.у. -38355,81 кВАр Потери в линиях электропередачи 3896,71 кВт Потери в линиях электропередачи 3896,71 кВт Потери в ктивной мощности dРл 3896,71 кВт Потери реактивной мощности dQл 8414,17 кВАр Потери в корону dРкор 0 кВт Генерация линий dQc -130167,98 кВАр Потери в трансформаторах 16831,37 кВАр Потери реактивной мощности dPr 582,24 кВт Потери реактивной мощности dPr 16831,37 кВАр Активные потери холостого хода dPxx 680,79 кВт Реактивные потери холостого хода dQxx 3970,63 кВАр Суммарные потери в сети 1007ери реактивной мощности dPcyмм Потери реактивной мощности dQcym 5159,74 кВт (3,71 %) Потери реактивной мощности dQcym -100951,82 кВАр Мощность нагрузок 133734,00 кВт Реактивная мощность Qcym 87405,55 кВАр	Мошность бялянсирующих уздов	
Активная мощность Рб.у. 138977,18 кВт Реактивная мощность Qб.у. -38355,81 кВАр Потери в линиях электропередачи -38355,81 кВАр Потери в линиях электропередачи 3896,71 кВт Потери велиниях электропередачи 3896,71 кВт Потери реактивной мощности dРл 3896,71 кВт Потери реактивной мощности dQл 8414,17 кВАр Потери вактивной мощности dQr 0 кВт Генерация линий dQc -130167,98 кВАр Потери в трансформаторах -16831,37 кВАр Потери реактивной мощности dPr 582,24 кВт Потери реактивной мощности dQr 16831,37 кВАр Активные потери холостого хода dPxx 680,79 кВт Реактивные потери холостого хода dQxx 3970,63 кВАр Суммарные потери в сети 5159,74 кВт (3,71 %) Потери реактивной мощности dPcymm 5159,74 кВт (3,71 %) Потери реактивной мощности dQcymm -100951,82 кВАр Мощность нагрузок -133734,00 кВт Реактивная мощность Qcymm 87405,55 кВАр	inordioera omanonpy iordini yonoa	
Реактивная мощность Qб.у. -38355,81 кВАр Потери в линиях электропередачи	Активная мощность Рб.у.	138977,18 кВт
Потери в линиях электропередачи Потери активной мощности dPл 3896,71 кBT Потери реактивной мощности dQл 8414,17 кBAp Потери на корону dPкор 0 кBT Генерация линий dQc -130167,98 кBAp Потери в трансформаторах Потери в трансформаторах Потери в колостого хода dPxx 582,24 кBT Потери реактивной мощности dQr 16831,37 кBAp Активные потери холостого хода dPxx 680,79 кBT Реактивные потери в сети Суммарные потери в сети Потери реактивной мощности dPcymm 5159,74 кBt (3,71 %) Потери реактивной мощности dQcymm -100951,82 кBAp Активная мощность Рсумм 133734,00 кBT Реактивная мощность Рсумм 133734,00 кBT Реактивная мощность Qсумм 87405,55 кBAp	Реактивная мощность Qб.у.	-38355,81 кВАр
Потери в линиях электропередачи Потери активной мощности dPл 3896,71 кBT Потери реактивной мощности dQл 8414,17 кBAp Потери на корону dPkop 0 кBT Генерация линий dQc -130167,98 кBAp Потери в трансформаторах 1000000000000000000000000000000000000		
Потери активной мощности dPл 3896,71 кBт Потери реактивной мощности dQл 8414,17 кBAp Потери на корону dPкор 0 кBт Генерация линий dQc -130167,98 кBAp Потери в трансформаторах Потери в трансформаторах 582,24 кBт Потери реактивной мощности dPr 582,24 кBT Потери реактивной мощности dQr 16831,37 кBAp Активные потери холостого хода dPxx 680,79 кBT Реактивные потери холостого хода dQxx 3970,63 кBAp Суммарные потери в сети Потери активной мощности dPcymm 5159,74 кBт (3,71 %) Потери реактивной мощности dQcymm 5159,74 кBT (3,71 %) Потери реактивной мощности dQcymm 133734,00 кBT Реактивная мощность Qcymm 133734,00 кBT Реактивная мощность Qcymm 87405,55 кBAp	Потери в линиях электропередачи	
Потери реактивной мощности dQл 8414,17 кВАр Потери на корону dРкор 0 кВт Генерация линий dQc -130167,98 кВАр Потери в трансформаторах -130167,98 кВАр Потери в трансформаторах 582,24 кВт Потери реактивной мощности dPr 582,24 кВт Потери реактивной мощности dPr 6831,37 кВАр Активные потери холостого хода dPxx 680,79 кВт Реактивные потери холостого хода dQxx 3970,63 кВАр Суммарные потери в сети 5159,74 кВт (3,71 %) Потери реактивной мощности dQcymm 5159,74 кВт (3,71 %) Потери реактивной мощности dQcymm 513734,00 кВт Мощность нагрузок 133734,00 кВт Реактивная мощность Qcymm 87405,55 кВАр	Потери активной мощности dРл	3896,71 кВт
Потери на корону dРкор 0 кВт Генерация линий dQc -130167,98 кВАр Потери в трансформаторах -130167,98 кВАр Потери в трансформаторах -130167,98 кВАр Потери в ктивной мощности dPr 582,24 кВт Потери реактивной мощности dQr 16831,37 кВАр Активные потери холостого хода dPxx 680,79 кВт Реактивные потери холостого хода dQxx 3970,63 кВАр Суммарные потери в сети 5159,74 кВт (3,71 %) Потери реактивной мощности dPcyмм 5159,74 кВт (3,71 %) Потери реактивной мощности dQcymm -100951,82 кВАр Мощность нагрузок 133734,00 кВт Активная мощность Qcymm 87405,55 кВАр	Потери реактивной мощности dQл	8414,17 кВАр
Генерация линий dQc -130167,98 кВАр Потери в трансформаторах - Потери активной мощности dPr 582,24 кВт Потери реактивной мощности dQr 16831,37 кВАр Активные потери холостого хода dPxx 680,79 кВт Реактивные потери холостого хода dQxx 3970,63 кВАр Суммарные потери в сети - Потери активной мощности dPcyмм 5159,74 кВт (3,71 %) Потери реактивной мощности dQcymm -100951,82 кВАр Мощность нагрузок 133734,00 кВт Реактивная мощность Qcymm 87405,55 кВАр	Потери на корону dРкор	0 кВт
Потери в трансформаторах Потери активной мощности dPr 582,24 кBr Потери реактивной мощности dQr 16831,37 кBAp Активные потери холостого хода dPxx 680,79 кBr Реактивные потери холостого хода dQxx 3970,63 кBAp Суммарные потери в сети 5159,74 кBr (3,71 %) Потери реактивной мощности dPcyмм 5159,74 кBr (3,71 %) Потери реактивной мощности dQcyмм -100951,82 кBAp Мощность нагрузок 133734,00 кBr Реактивная мощность Qcyмм 87405,55 кBAp	Генерация линий dQc	-130167,98 кВАр
Потери активной мощности dPr 582,24 кВт Потери реактивной мощности dQr 16831,37 кВАр Активные потери холостого хода dPxx 680,79 кВт Реактивные потери холостого хода dQxx 3970,63 кВАр Суммарные потери в сети Потери активной мощности dPcyмм 5159,74 кВт (3,71 %) Потери реактивной мощности dQcymm -100951,82 кВАр Мощность нагрузок Активная мощность Pcymm 133734,00 кВт Реактивная мощность Qcymm 87405,55 кВАр	Потери в трансформаторах	
Потери активной мощности dPr 582,24 кBr Потери реактивной мощности dQr 16831,37 кBAp Активные потери холостого хода dPxx 680,79 кBr Реактивные потери холостого хода dQxx 3970,63 кBAp Суммарные потери в сети Потери активной мощности dPcyмм 5159,74 кBr (3,71 %) Потери реактивной мощности dQcyмм -100951,82 кBAp Мощность нагрузок Активная мощность Pcym 133734,00 кBr Реактивная мощность Qcym 87405,55 кBAp	· · · · · · · · · · · · · · ·	
Потери реактивной мощности dQr 16831,37 кВАр Активные потери холостого хода dPxx 680,79 кВт Реактивные потери холостого хода dQxx 3970,63 кВАр Суммарные потери в сети Потери активной мощности dPcyмм 5159,74 кВт (3,71 %) Потери реактивной мощности dQcyмм -100951,82 кВАр Мощность нагрузок 133734,00 кВт Реактивная мощность Qcyмм 87405,55 кВАр	Потери активной мощности dРт	582,24 кВт
Активные потери холостого хода dPxx 680,79 кBT Реактивные потери холостого хода dQxx 3970,63 кBAp Суммарные потери в сети Потери активной мощности dPcyмм 5159,74 кBr (3,71 %) Потери реактивной мощности dQcyмм -100951,82 кBAp Мощность нагрузок Активная мощность Pcyмм 133734,00 кBT Реактивная мощность Qcyмм 87405,55 кBAp	Потери реактивной мощности dQт	16831,37 кВАр
Реактивные потери холостого хода dQxx 3970,63 кВАр Суммарные потери в сети 5159,74 кВт (3,71 %) Потери активной мощности dPсумм 5159,74 кВт (3,71 %) Потери реактивной мощности dQсумм -100951,82 кВАр Мощность нагрузок 133734,00 кВт Реактивная мощность Qсумм 87405,55 кВАр	Активные потери холостого хода dPxx	680,79 кВт
Суммарные потери в сети Потери активной мощности dРсумм 5159,74 кВт (3,71 %) Потери реактивной мощности dQсумм -100951,82 кВАр Мощность нагрузок 133734,00 кВт Реактивная мощность Qсумм 87405,55 кВАр	Реактивные потери холостого хода dQxx	3970,63 кВАр
Потери активной мощности dPсумм 5159,74 кBr (3,71 %) Потери реактивной мощности dQсумм -100951,82 кBAp Мощность нагрузок 133734,00 кBr Реактивная мощность Qсумм 87405,55 кBAp	Суммарные потери в сети	
Потери активной мощности dPсумм 5159,74 кBr (3,71 %) Потери реактивной мощности dQсумм -100951,82 кBAp Мощность нагрузок 133734,00 кBr Реактивная мощность Qсумм 87405,55 кBAp		
Потери реактивной мощности dQcyмм -100951,82 кВАр Мощность нагрузок 133734,00 кВт Активная мощность Pcymm 133734,00 кВт Реактивная мощность Qcymm 87405,55 кВАр	Потери активной мощности dPсумм	5159,74 кВт (3,71 %)
Мощность нагрузок Активная мощность Рсумм 133734,00 кВт Реактивная мощность Qсумм 87405,55 кВАр	Потери реактивной мощности dQсумм	-100951,82 кВАр
Активная мощность Рсумм 133734,00 кВт Реактивная мощность Qсумм 87405,55 кВАр	Мощность нагрузок	
Реактивная мощность Осумм 87405,55 кВАр	Активная мощность Рсумм	133734,00 кВт
	Реактивная мощность Осумм	87405,55 кВАр

Результаты расчета показали, что отключение данного элемента схемы не привело к выводу напряжения из допустимой области. В связи с этим регулирование не производилось.

1.3.3. Отключение цепи линии «Советстко-Соснинская – Вахская»

В данном случае моделируется аварийное отключение одной из цепей ЛЭП «Совестско-Соснинская – Вахская». На рисунке 1.7 представлено отключение одной из цепей ЛЭП «Советско-Соснинская – Вахская».

Рисунок 1.7 – Послеаварийный режим 3 до регулирования

В таблице 1.20 представлены параметры расчета.

_

Таблица 1.20 – Параметры расчета

Параметры расчета	
Число итераций	22
Количество контуров в схеме	11
Достигнутая точность по напряжениям	0,09 кВ (задано 0,1 кВ)
Достигнутая точность по фазовым углам	0,02 ° (задано 0,1 °)
Максимальная величина небаланса мощности	0,02 MBt
Способ учёта нагрузки	
Режим максимальных нагрузок	
Отбор мощности	
Мощность балансирующих узлов	
Активная мощность Рб.у.	139704,35 кВт
Реактивная мощность Qб.у.	-36238,01 кВАр
Потери в линиях электропередачи	
Потери активной мощности dРл	4590,33 кВт
Потери реактивной мощности dQл	9243,97 кВАр
Потери на корону dРкор	0 кВт
F	

Потери в трансформаторах		
Потери активной мощности dPт	584,43 кВт	
Потери реактивной мощности dQт	16327,85 кВАр	
Активные потери холостого хода dPxx	675,89 кВт	
Реактивные потери холостого хода dQxx	3941,12 кВАр	
Суммарные потери в сети Потери активной мошности dРсумм	5850.65 kBt (4.19 %)	
Потери реактивной мощности dQсумм	-100385,83 кВАр	
Мощность нагрузок		
Активная мощность Рсумм	133734,00 кВт	
Реактивная мощность Осумм	88746,21 кВАр	

В таблице 1.21 представлены проблемные узлы.

Таблица 1.21 – Параметры расчета

N	Название	ЦrВ	Delta,	Uжел,	d11 %	D vBT	O rB∆n	Re Y,	Im Y,
1		0, KD	гр	кВ	u0, 70	1, крі	Q, кDAp	мкСм	мкСм
76	Стрежевое Сек II 10 кВ	9,62	-4,81	10,00	-3,77	945,00	585,00	0	0
77	Вахская Сек III 35 кВ	32,90	-9,53	35,00	-6,00	6800,00	4214,00	0	0
83	Вахская Сек I 6 кВ	5,70	-7,86	6,00	-4,93	2125,00	1317,00	0	0
84	Вахская Сек I 35 кВ	33,38	-7,45	35,00	-4,63	8500,00	5268,00	0	0

В таблице 1.22 представлены использованные трансформаторы для

регулирования напряжения.

Таблица 1.22 – Степени свободы для введения в допустимую область

Марка					
трансформатора/	Степень	Степень			
автотрансформато	свободы	свободы			
ра	(РПв)	(РПс)	Узел ВН	Узел СН	Узел НН
АТДЦТН-			Советско-	Советско-	
63000/220/110			Соснинск	Соснин Сек І	
(230;121;6.6)	-	5	СекІ 220кВ	110 кВ	-
АТДЦТН-			Советско-	Советско-	
63000/220/110			Соснинск	Соснин Сек II	
(230;121;6.6)	-	5	СекІ 220кВ	110 кВ	-
АТДЦТН-				Советско-	
63000/220/110				Соснин Сек II	
(230;121;6.6)	-	5	Система	110 кВ	-
ТДТН-10000/110			Вахская Сек	Вахская Сек	
(115;38.5;6.6)	10	2	III 110 кВ	III 35 кВ	-
ТДТН-16000/110			Вахская Сек II	Вахская Сек II	Вахская Сек II
(115;38.5;6.6)	7	3	110 кВ	35 кВ	6 кВ
ТДТН-25000/110			Вахская Сек I	Вахская Сек I	Вахская Сек I
(115;38.5;6.6)	10	3	110 кВ	35 кВ	6 кВ
ТДТН-25000/110	6	3	Стрежевое	Стрежевое	Стрежевое
(115;38.5;11)			Сек II 110 кВ	Сек II 35 кВ	Сек II 10 кВ
----------------	---	---	---------------	--------------	--------------
ТДТН-25000/110			Стрежевое	Стрежевое	Стрежевое
(115;38.5;11)	6	3	Сек I 110 кВ	Сек I 35 кВ	Сек I 10 кВ
			Советско-		Алексан
ТДТН-63000/110			Соснин Сек II	Алексан НПС	НПСТ2 Сек II
(115;38.5;6.6)	4	3	110 кВ	Сек II 35 кВ	6 кВ
			Советско-		Алексан
ТДТН-63000/110			Соснин Сек І	Алексан НПС	НПСТ1 Сек II
(115;38.5;6.6)	4	3	110 кВ	Сек I 35 кВ	6 кВ

Для контроля введения напряжения в допустимую область был произведен расчет, параметры которого представлены в таблице 1.23.

Таблица 1.23 – Параметры расчета

Параметры расчёта	
II	22
число итерации	22
Количество контуров в схеме	
Достигнутая точность по напряжениям	0,09 кВ (задано 0,1 кВ)
Достигнутая точность по фазовым углам	0,02 ° (задано 0,1 °)
Максимальная величина небаланса мощности	0,02 МВт
Способ учёта нагрузки	
Режим максимальных нагрузок	
Отбор мощности	
Мощность балансирующих узлов	
Активная мошность Рб.у.	139590.94 кВт
Реактивная мощность Qб.у.	-37560,96 кВАр
_	2 I
Потери в линиях электропередачи	
Потери активной мощности dРл	4480,15 кВт
Потери реактивной мощности dQл	9102,03 кВАр
Потери на корону dРкор	0 кВт
Генерация линий dQc	-130752,61 кВАр
Потери в трансформаторах	
Потери активной мощности dРт	520,57 кВт
Потери реактивной мощности dQт	15916,77 кВАр
Активные потери холостого хода dРхх	688,89 кВт
Реактивные потери холостого хода dQxx	4022,98 кВАр
Суммарные потери в сети	
Потери активной мощности dРсумм	5689,61 кВт (4,08 %)
Потери реактивной мощности dQсумм	-101710,83 кВАр
Мощность нагрузок	
Активная мощность Рсумм	133734,00 кВт
Реактивная мощность Qсумм	88746,21 кВАр

В таблице 1.24 представлены результаты регулирования напряжения в проблемых узлах.

Ν	Цаарауууа	U, кВ	Delta,	Uжел,	111 0/	Р, кВт	Q, кВАр	Re Y,	Im Y,
	пазвание		гр	кВ	u U, %			мкСм	мкСм
76	Стрежевое Сек II 10 кВ	10,09	-4,69	10,00	0,86	945,00	585,00	0	0
77	Вахская Сек III 35 кВ	35,05	-9,09	35,00	0,15	6800,00	4214,00	0	0
83	Вахская Сек I 6 кВ	6,02	-7,54	6,00	0,34	2125,00	1317,00	0	0
84	Вахская Сек I 35 кВ	35,22	-7,16	35,00	0,64	8500,00	5268,00	0	0

Таблица 1.24 – Результаты расчета послеаварийного режима 3

Таким образом, изменив степени свободы на трансформаторах, напряжение в проблемных узлах было введено в допустимую область. На рисунке 1.8 представлена часть схемы с исследуемой аварийной ситуацией после регулирования.

Рисунок 1.8 – Послеаварийный режим 3 после регулирования

1.3.4. Отключение цепи линии «Советско-Соснинская – Чапаевка»

В данном случае было произведено моделирование аварийного отключения одной из цепей ЛЭП «Советско-Соснинская – Чапаевка». На рисунке 1.9 представлен моделируемый послеаварийный режим до регулирования.

Рисунок 1.9 – Послеаварийный режим 4 до регулирования

Полученные в результате расчета данные сводим в таблицы 1.25 и 1.26

Таблица 1.25 – Параметры расчета

Параметры расчёта	
**	
Число итераций	23
Количество контуров в схеме	10
Достигнутая точность по напряжениям	0,07 кВ (задано 0,1 кВ)
Достигнутая точность по фазовым углам	0,05 ° (задано 0,1 °)
Максимальная величина небаланса мощности	0,04 МВт
Способ учёта нагрузки	
Режим максимальных нагрузок	
Отбор мощности	
1	
Мощность балансирующих узлов	
Активная мощность Рб.у.	139899,89 кВт
Реактивная мощность Qб.у.	-18628,61 кВАр
потери в линиях электропередачи	
Потери активной мощности dРл	4780,55 кВт
Потери реактивной мощности dQл	11957,95 кВАр
Потери на корону dРкор	0 кВт
Генерация линий dQc	-115293,11 кВАр
потери в трансформаторах	
Потери активной мощности dРт	566,76 кВт
Потери реактивной мощности dQт	15928,50 кВАр
Активные потери холостого хода dPxx	683,24 кВт
Реактивные потери холостого хода dQxx	3984,46 кВАр
Суммарные потери в сети	
Потери активной мощности dРсумм	6030,55 кВт (4,31 %)
Потери реактивной мощности dQсумм	-83422,20 кВАр
Мощность нагрузок	
Активная мощность Рсумм	133734,00 кВт
Реактивная мощность Осумм	90193,79 кВАр

Таблица 1.26 – Результаты расчета послеаварийного режима 4 (проблемные

узлы до регулирования)

N	Название	U, ĸB	Delta, гр	Uжел, кВ	dU, %	Р, кВт	Q, кBAp	Re Y, мкСм	Im Y, мкСм
71	Чапаевка Сек II 110 кВ	115,67	-12,00	110,00	5,15	0	0	0	0
83	Чапаевка Сек I 110 кВ	115,67	-12,00	110,00	5,15	0	0	0	0

Для ввода параметров в допустимую область было произведено регулирование уровней напряжения на шинах путем изменения коэффициентов трансформации.

Таблица 1.27 – Степени свободы для введения в допустимую область

Марка					
трансформатора/	Степень	Степень			
автотрансформато	свободы	свободы			
ра	(РПв)	(РПс)	Узел ВН	Узел СН	Узел НН
АТДЦТН-					
63000/220/110			Чапаевка Сек	Чапаевка Сек	Чапаевка Сек
(230;121;11)	-	9	II 220 KB	II 110 KB	II 10 KB
		-	II 220 KD	II IIO KD	II IO KD
АТДЦТН-			11 220 KD		II TO KD
АТДЦТН- 63000/220/110			Чапаевка Сек	Чапаевка Сек	Чапаевка Сек
АТДЦТН- 63000/220/110 (230;121;11)	-	9	Чапаевка Сек I 220 кВ	Чапаевка Сек I 110 кВ	Чапаевка Сек I 10 кВ

Для контроля введения напряжения в допустимую область был

произведен расчет, параметры которого представлены в таблице 1.28.

Таблица 1.28 – Параметры расчета

Параметры расчёта		
Параметры расчёта		
н "	22	
Число итерации	23	
Поотичество контуров в схеме	10 0.07 kP (parate 0.1 kP)	
Достигнутая точность по напряжениям	0.03° (23 Jano 0.1 °C)	
Максимальная велицина небаланса мошности	$0.03 \text{ MB}_{\text{T}}$	
Максимальная величина неоаланса мощности	0,05 MD1	
Способ учёта нагрузки		
Режим максимальных нагрузок		
Отбор мошности		
Мощность балансирующих узлов		
AKTURNAS MOULHOCTL PG V	140260 94 KBT	
Реактивная мощность Об у	-22393 51 kBAn	
	22070,01 1211p	
Потери в линиях электропередачи		
Потери активной мощности dРл	5156.89 кВт	
Потери реактивной мощности dQл	12672,35 кВАр	
Потери на корону dРкор	0 кВт	
Генерация линий dQc	-115469,55 кВАр	
Потери в трансформаторах		
Потери активной мощности dРт	569,48 кВт	
Потери реактивной мощности dQт	16001,56 кВАр	
Активные потери холостого хода dPxx	681,65 кВт	
Реактивные потери холостого хода dQxx	3972,44 кВАр	
Суммарные потери в сети		
Потери активной мощности dРсумм	6408,02 кВт (4,57 %)	
Потери реактивной мощности dQсумм	-82823,19 кВАр	

Мощность	нагрузок
----------	----------

Активная мощность Рсумм Реактивная мощность Qсумм 133734,00 кВт 85322,61 кВАр

В таблице 1.29 представлены результаты регулирования напряжения в проблемых узлах.

Таблица 1.29 – Результаты расчета послеаварийного режима

N	Название	U, ĸB	Delta, гр	Uжел, кВ	dU, %	Р, кВт	Q, кBAp	Re Y, мкСм	Im Y, мкСм
71	Чапаевка Сек II 110 кВ	114,57	-12,01	110,00	4,16	0	0	0	0
83	Чапаевка Сек I 110 кВ	114,57	-12,01	110,00	4,16	0	0	0	0

При помощи РПН трансформаторов удалось добиться желаемых уровней напряжения, следовательно, режим можно считать входящим в допустимую область. На рисунке 1.10 представлен результат регулирования.

Вывод по разделу 3:

В ходе моделирования и последующего расчета послеаварийных режимов было установлено, что выход из строя отдельных элементов сети может повлечь за собой различные последствия: от незначительных изменений уровней напряжения на шинах потребителей до вывода режима из допустимой области.

Часть проблем послеаварийных режимов может быть решена путем использования РПН трансформаторов и установкой компенсирующих устройств (последний метод не был использован в данной курсовой работе).

Рисунок 1.10 – Послеаварийный режим 4 после регулирования

1.4. Оценка пропускной способности

Снабжение потребителей осуществляется от внешней сети, установленной в ПС «Советско-Соснинская». Интерес в отношении оценки пропускной способности представляют линии, непосредственно связанные с питающим узлом.

Для оценки пропускной способности электрических сетей были рассмотрены следующие направления:

- Советско-Соснинская Чапаевка;
- Советско-Соснинская Вахская.

Для исследования пропускной способности производилось утяжеление режима путем установки нагрузки на шинах 110 или 220 кВ.

1.4.1. Оценка пропускной способности электрической сети в направлении «Советско-Соснинская – Чапаевка»

Оценка пропускной способности осуществлялась путем установки нагрузки на шинах 220 кВ на подстанции Чапаевка. Шаг увеличения нагрузки был принят равным 10 МВт.

Допустимое отклонение напряжения на шинах потребителя в максимальном режиме в большую или меньшую сторону: 5% от номинального напряжения, ток в линии не должен превышать допустимых значений. Ограничение по току принято равным 610 А.

Результаты исследования пропускной способности цепи линии приведены в таблице 1.30.

Таблица 1.30 – Пропускная способность в	направлении к узлу	Чапаевка
---	--------------------	----------

Активная мощность нагрузки в узле, МВт	Напряжение в узле, кВ	Ввод напряжения в допустимую область	Ток по цепям ВЛ, А Ідоп=610 А
10	219,66	-	35,02
20	217,47	-	53,13
30	215,21	-	80,54
40	212,88	-	111,17

50	210,48	-	143,53
56	209,00	-	163,57

По результатам оценки видно, максимальная мощность, которую можно передать в направлении «Советско-Соснинская – Чапаевка» составляет 56 МВт. Таким образом, предельная передаваемая мощность отличается от первоначально заданной в 5,6 раз, что говорит о значительном запасе пропускной способности электрической сети.

Это значение передаваемой мощности является предельным, поскольку дальнейшее увеличение мощности приводило к превышению значений токов над допустимыми.

1.4.2. Оценка пропускной способности электрической сети в направлении «Советско-Соснинская – Вахская»

Оценка пропускной способности осуществлялась путем установки нагрузки на шинах 110 кВ на подстанции «Вахская». Шаг увеличения нагрузки был принят равным 10 МВт.

Допустимое отклонение напряжения на шинах потребителя в максимальном режиме в большую или меньшую сторону: 5% от номинального напряжения, ток в линии не должен превышать допустимых значений. Ограничение по току составляет для ЛЭП 375 А. Также дополнительным ограничением является предельный ток автотрансформаторов, равный 257 А.

Результаты исследования пропускной способности электрической сети приведены в таблице 1.31.

Активная мощность нагрузки в узле ПС №610, МВт	Напряжение в узле ПС №610, кВ	Ввод напряжения в допустимую область	Ток по цепям ВЛ, А Ідоп=390
0,7	35,62		14,2; 16,8
5,8	33,58		131,2;130,9
9,2	31,94		224,7;224,3
13,4	29,02		389,32;388,93

Таблица 1.31 – Пропускная способность в направлении к узлу «Вахская»

По результатам оценки видно, максимальная мощность, которую можно передать в направлении «Советско-Соснинская –Вахская» составляет 56 МВт. Таким образом, предельная передаваемая мощность отличается от первоначально заданной в 5,6 раз, что говорит о значительном запасе пропускной способности электрической сети.

Это значение передаваемой мощности является предельным, поскольку дальнейшее увеличение мощности приводило к превышению значений токов над допустимыми.

Вывод по разделу 4:

В ходе оценки пропускной способности электрической сети в заданных направлениях было установлено, что основными ограничивающими параметрами являются предельно допустимые токи отдельных элементов сети, а также напряжение на шинах нагрузки. При этом последний параметр при наличии РПН поддается регулированию.

Для исследуемой электрической сети были установлены значения предельных мощностей, которые могут быть переданы в заданных направлениях. Получившиеся значения показали, что пропускная способность находится далеко от границы, что позволяет говорить о наличии запаса в диапазоне передаваемой мощности.

1.5. Увеличение пропускной способности

Основными ограничивающими параметрами пропускной способности являются нарушение ограничения по току в отдельных элементах сети и наличие нежелаемых уровней напряжений в узлах.

Пропускная способность электрической сети может быть устранена следующими способами:

1. компенсацией реактивной мощности *в* основных элементах с помощью КБ. В результате возрастают уровни напряжения и уменьшаются токи.

2. переводом части линий, выполненных в габаритах более высокого класса напряжения, в свой класс напряжения со строительством дополнительных ПС.

3. строительством новых ЛЭП того же класса напряжения и расширением подстанций.

1.5.1. Увеличение пропускной способности электрической сети в направлении «Советско-Соснинская – Чапаевка»

При оценке пропускной способности электрической сети в заданном направлении было установлено, что предельное значение превышает первоначально заданное в 5,6 раз. В случае необходимости более существенной загрузки конечной подстанции необходимо решать задачу увеличения пропускной способности путем установки на шинах батарей статических конденсаторов.

Путем дальнейшего утяжеления режима увеличением нагрузки на ПС «Чапаевка» и регулированием реактивной мощности БСК, были получены следующие результаты повышения пропускной способности сети – таблица 1.32.

Таблица 1.32 – Увеличение пропускной способности электрической сети в направлении узла ПС «Чапаевка»

Активная мощность нагрузки в узле, МВт	Напряжение в узле ПС «Чапаевка», кВ	Ввод напряжения в допустимую область	Ток по цепям ВЛ, А Ідоп=610 А	Мощность БСК, МВар
15,1	32,71	-	386,27;386,3	0
60	209,17	-	172,05	10
70	209	-	196,69	30
80	209,41	-	220,74	55
90	209,37	-	247,34	75
100	209,53	-	273,44	100
120	210,23	-	327,71	150
140	209,26	-	384,87	190
180	209,63	-	500,55	290
210	210,26	-	589,97	370
215	211,67	-	605,18	390

Пропускную способность электрической сети в направлении «Советско-Соснинская – Чапаевка» удалось увеличить до 215 МВт, т.е. практически в 4 раза по сравнению с первоначально заданным значением активной мощности. Это говорит об эффективности использования БСК для повышения пропускной способности электрической сети и наличия запаса пропускной способности для дальнейшего укрупнения этой части энергосистемы.

1.5.2. Увеличение пропускной способности электрической сети в направлении «Советско-Соснинская – Вахская»

При оценке пропускной способности электрической сети в заданном направлении было установлено, что предельное значение превышает первоначально заданное в 5,6 раз. В случае необходимости более существенной загрузки конечной подстанции необходимо решать задачу

увеличения пропускной способности путем установки на шинах батарей статических конденсаторов.

Путем дальнейшего утяжеления режима увеличением нагрузки на ПС «Вахская» и регулированием реактивной мощности БСК, были получены следующие результаты повышения пропускной способности сети – таблица 1.33.

Таблица 1.33 – Увеличение пропускной способности электрической сети в направлении «Советско-Соснинская – Вахская»

Активная мощность нагрузки в узле, МВт	Напряжение в узле ПС «Вахская», кВ	Ввод напряжения в допустимую область	Ток по цепям ВЛ, А Ідоп=390 А	Мощность БСК, МВар
13,4	29,02		389,32;388,93	0
14,2	29,10		386,34;386,97	5
14,9	30,39		329,27;328,97	10
16,9	30,37		346,12;345,67	15

Пропускную способность электрической сети в направлении «Советско-Соснинская – Чапаевка» удалось увеличить до 215 МВт, т.е. практически в 4 раза по сравнению с первоначально заданным значением активной мощности. Дальнейшее увеличение приводило к превышению предельно допустимого тока.

При постепенном утяжелении режима значения напряжений на шинах удаленной подстанции отличались от желаемых, поэтому оказалось необходимым использовать РПН трансформаторов, чтобы ввести напряжения в допустимую область.

Вывод по разделу 5:

В ходе исследования возможности увеличения пропускной способности электрической сети в заданных направлениях было установлено, что наиболее эффективным и, в данных условиях, приемлемым методом является компенсация реактивной мощности с помощью батарей статических конденсаторов. Предельное значение пропускной способности было

получено путем утяжеления режима до тех пор, пока не были достигнуты предельно допустимые значения тока линии и трансформаторов, установленных в рассматриваемых частях электрической сети.

Полученные значения предельных пропускных способностей электрической сети в заданных направлениях позволяют говорить о том, что схема северной части Томской энергосистемы может быть расширена и утяжелена в будущем.

1.6.Выбор сечения проводника ВЛЭП «Советско-Соснинская – Вахская (отрезок Советско-Соснинская-отп. Стрежевое)»

В этом разделе был произведен выбор сечения проводника для ВЛЭП «Советско-Соснинская – Вахская (отрезок Советско-Соснинская-отп. Стрежевое)». Также было проведено сравнение рассчитанного значения с реальным.

При проектировании ВЛ напряжением 35-110 кВ включительно выбор сечения проводов производится по нормированным обобщенным показателям. В качестве таких показателей используются нормированные значения экономической плотности тока.

Суммарное сечение F проводов фазы проектируемой ВЛ составляет:

$$F = \frac{I_{pacy}}{j_{H}}, \text{ где } I_{pacy} - \text{расчетный ток, A}$$
$$I_{pacy} = \frac{1,05 \cdot P_{H}}{\sqrt{3} \cdot U_{H} \cdot \cos \varphi \cdot n} = \frac{1,05 \cdot 34825}{\sqrt{3} \cdot 110 \cdot 0,9 \cdot 2} = 106,62 A;$$

*J*_{*н*} - нормированная плотность тока, А/мм². В соответствии с Правилами устройства электроустановок (ПУЭ) нормированы значения плотности тока для ВЛ 35 – 110 кВ. Для рассматриваемой сети принимаем 0,9 А/мм², тогда

$$F = \frac{I_{pacy}}{j_{H}} = \frac{106,62}{0,9} = 118,47 \text{ mm}^{2}$$

Выбираем ближайшее стандартное значение сечения – AC 120/39 [21]. Проверка:

 по механической прочности – для ВЛ 110 кВ сечение должно быть не менее 70 мм²;

2. по допустимым потерям и отклонениям напряжения ВЛ 35 кВ и выше не подлежат, так как повышение уровня напряжения путем увеличения сечения проводов таких линий по сравнению с применением

трансформаторов с РПН или средств компенсации реактивной мощности экономически не оправдывается;

3. по допустимой токовой нагрузке (по нагреву) проверку осуществляем для послеаварийного режима:

$$I^{n/a_{max}} = \frac{1,05 \cdot P_{H}}{\sqrt{3} \cdot U_{H} \cdot \cos \varphi \cdot n} = \frac{1,05 \cdot 2 \cdot 34825}{\sqrt{3} \cdot 110 \cdot 0,9 \cdot 1} = 213,24 A$$

n = 1 (*mak kak peskum n / ab*) $I^{n/ab}_{max} < I_{oon}; 213, 24 \ A < 390 A.$

Таким образом, выбранный провод прошел все проверки.

Вывод по разделу 6:

В ходе выбора сечения проводника был использован метод экономической плотности тока. Выбранный провод прошел все необходимые проверкии.

Полученное сечение совпадает с реальным сечением провода ВЛЭП на рассматриваемом участке.

Вывод к главе 1

В ходе главы 1 выпускной квалификационной работы для исследуемой схемы Томской энергосистемы северной части были рассчитаны и введены в допустимую область по напряжению режимы работы максимальной и минимальной нагрузки.

По результатам расчета каждого режима были выявлены проблемные узлы, напряжения которых в последствии были введены в допустимую область отклонения от U_{жел}. Ввод параметров в допустимую область был осуществлен с помощью РПН трансформаторов и автотрансформаторов.

Целью регулирования напряжения является: обеспечение допустимого нарпяжения на шинах электропотребителей требованиям ГОСТа по качеству электроэнергии, а в остальных точках сети техническими ограничениями, минимизации потерь активной мощности и электроэнергии.

Суммарные потери активной мощности, выраженные в процентах, рассматриваемого участка Томской энергосистемы, составили 3,64%. В минимальном режиме были получены потери, равные 3,67%, что допустимо для данной схемы.

В ходе моделирования и последующего расчета послеаварийных режимов было установлено, что выход из строя отдельных элементов сети может повлечь за собой различные последствия: от незначительных изменений уровней напряжения на шинах потребителей до вывода режима из допустимой области.

Часть проблем послеаварийных режимов может быть решена путем использования РПН трансформаторов и установкой компенсирующих устройств (последний метод не был использован в данной курсовой работе).

Также была проведена оценка пропускной способности электрической сети в заданных направлениях, в ходе которой было установлено, что основными ограничивающими параметрами являются предельно допустимые

токи отдельных элементов сети, а также напряжение на шинах нагрузки. При этом последний параметр при наличии РПН поддается регулированию.

Для исследуемой электрической сети были установлены значения предельных мощностей, которые могут быть переданы в заданных направлениях. Получившиеся значения показали, что пропускная способность находится далеко от границы, что позволяет говорить о наличии запаса в диапазоне передаваемой мощности.

В четвертой части была исследована возможность увеличения пропускной способности электрической сети в заданных направлениях, в ходе чего было установлено, что наиболее эффективным и, в данных условиях, приемлемым методом является компенсация реактивной мощности с помощью батарей статических конденсаторов. Предельное значение пропускной способности было получено путем утяжеления режима до тех пор, пока не были достигнуты предельно допустимые значения тока линии и трансформаторов, установленных в рассматриваемых частях электрической сети.

Полученные значения предельных пропускных способностей электрической сети в заданных направлениях (в 4 и раза больше значений до проведения мероприятий по увеличению пропускной способности) позволяют говорить о том, что схема северной части Томской энергосистемы может быть расширена и утяжелена в будущем.

Произведенное регулирование смоделированных режимов может быть на реальных объектах оптимизировано с помощью внедрения синхронизации измерений параметров режимов. Эта задача исследована в главе 3 выпускной квалификационной работы.

Глава 2. Оценка надежности северной части Томской энергосистемы

Одними из главных функций электроэнергетических систем являются надежное электроснабжение потребителей и недопущение ситуаций, опасных для окружающей среды и людей. В связи с этим целью главы 2 выпускной квалификационной работы стала оценка надежности рассматриваемой сети.

Исходя из поставленной цели, были выявлены следующие задачи работы:

- задача режимной надежности
- задача схемной (структурной) надежности

Для решения задачи режимной надежности производится оценка и выбор, в случае необходимости, технического резерва генерирующих ЭЭС мощностей для модели (без учета И с учетом плановопредупредительных ремонтов агрегатов). Для этого была рассмотрена энергосистема, основными элементами которой являются нагрузка и генерирующая часть, описываемые случайными величинами. Эта задача предполагает выявление таких состояний энергосистемы, в которых возникает дефицит, т.е. превышение мощности нагрузки над располагаемой генерирующей части мощностью И как следствие недоотпуск электроэнергии. Возникновение дефицита является случайным событием.

Задача схемной надежности подразумевает оценку надежности питания узла нагрузки схемы и определение величины недоотпуска электроэнергии потребителям.

Оценка надежности производилась при помощи следующих показателей надежности:

1. Индекс надежности (или коэффициент готовности) – определяется через отношение отпущенной энергосистемой электроэнергии к общей ее потребности:

$$\alpha = \frac{\mathcal{P}_{\Gamma O \mathcal{I}} - \Delta \mathcal{P}}{\mathcal{P}_{\Gamma O \mathcal{I}}}$$

где $\Im_{\Gamma O Z}$ – годовая потребность в электроэнергии; $\Delta \Im$ – математическое ожидание недоотпуска электроэнергии за год вследствие дефицита мощности. Нормативное минимальное значение $\alpha = 0.999$.

2. Коэффициент бездефицитной работы – определяется по вероятностной модели функционирования ЭЭС путем выделения состояний энергосистемы, при которых дефицит не возникает, т.е. при $P_{Ti} - P_{Hi} \ge 0$, и суммирования вероятностей возникновения этих состояний:

$$K_{{\scriptscriptstyle {\it БД}}} = \sum K_{{\scriptscriptstyle {\it БД}}i}$$
 ,

где $K_{E\mathcal{A}i}$ - коэффициенты готовности для каждого бездефицитного состояния энергосистемы $P_{E\mathcal{A}i}$. Нормативное минимальное значение $K_{E\mathcal{A}} = 0,996$.

2.1. Задача режимной надежности

Для выполнения главной функции ЭЭС, то есть для надежного электроснабжения потребителей, суммарный уровень мощности генерирующих агрегатов (располагаемой мощности энергосистемы) должен быть не менее прогнозируемого максимума нагрузки. При равенстве указанных мощностей любое снижение располагаемой мощности или увеличение нагрузки приводит к дефициту мощности и недоотпуску электроэнергии потребителям.

Перед тем как перейти к расчётам основных показателей режимной надёжности, необходимо сформировать модель энергосистемы. Модель энергосистемы является вероятностной моделью. Главными элементами энергосистемы в рамках этой задачи являются генерирующая часть и нагрузка. Поэтому сначала формируются вероятностные модели этих элементов.

Модели элементов включают в себя создание ряда распределения случайной величины. Для модели генерирующей части случайной величиной является мощность генерирующей части, для модели нагрузки, соответственно, – мощность нагрузки. Для энергосистемы формируется ряд распределения различных состояний энергосистемы (бездефицитной работы или дефицита генерируемой мощности).

После этого проводится определение величины показателей надежности: коэффициента надежности (α) и коэффициента бездефицитной работы (K_{EQ}), сравнение их с нормативными значениями, и, при необходимости делается вывод о введении резерва.

Введение резерва предполагает увеличение мощности генерирующей части.

Полагаем ЭС концентрированной и неоднородной системой. Концентрированной энергосистемой считаем такую ЭС, в которой связи между отдельными узлами не накладывают ограничений на потоки мощности в нормальных и аварийных режимах работы. Под неоднородной

системой понимаем систему, содержащую несколько групп разнотипных генераторов.

Мощность нагрузки энергосистемы находим путём суммирования всех нагрузок, а точнее воспользуемся эквивалентом нагрузки $P_H = 131,834$ МВт. Разделим генераторы на питающей электростанции в энергосистеме на две группы и примем следующие значения K_{Bi} и t_{IIi} (таблица 2.1).

При этом величина суммарной мощности генераторов *P*_г = 156 MBт

В таблице 2.1 дана информация о номинальной мощности генераторов каждой группы, количество генераторов в каждой группе, коэффициент вынужденного простоя [19], который определяется как вероятность того, что генератор будет неработоспособен в произвольно выбранный момент времени в промежутках между плановыми ремонтами, длительность плановых ремонтов.

Таблица 2.1 – Параметры однотипных генераторов

Номер группы генераторов	Мощность Рг , МВт	n _i , ШТ.	Коэффициент вынужденного простоя К _{ві} , о.е.	Длительность плановых ремонтов <i>t</i> _{пі} , мес.
1	33	2	0,008	0,5
2	30	3	0,008	0,5

В таблице 2.2 приведены параметры нагрузки для суток по периодам года. В таблице 2.3 приведена информация о продолжительности периодов годового графика нагрузки [16].

Brown outor	Время года						
Бремя суток	Зи	ма	Лето				
час	o.e.	о.е. МВт		МВт			
00-02	0,4	52,7336	0,3	39,5502			
02-04	0,2	26,3668	0,1	13,1834			
04-06	0,65	85,6921	0,1	13,1834			
06-08	0,65	85,6921	0,4	52,7336			
08-10	0,65	85,6921	0,4	52,7336			

Таблица 2.2 – Параметры нагрузки по периодам года

10-12	0,6	79,1004	0,5	65,917
12-14	1,0	131,834	0,45	59,3253
14-16	0,6	79,1004	0,5	65,917
16-18	0,6	79,1004	0,55	72,5087
18-20	0,7	92,2838	0,4	52,7336
20-22	0,7	92,2838	0,5	65,917
22-24	0,6	79,1004	0,4	52,7336

Таблица 2.3 – Продолжительность периодов годового графика нагрузки

Длительности периодов t_j (месяцев)/ d_j (дней)				
Зимний t ₁ /d ₁	Летний t_2/d_2			
7,99/243	4,01/122			

На рисунке 2.1 и рисунке 2.2 проиллюстрированы данные, представленные в таблице 2.2.

Рисунок 2.1 – Суточный график нагрузки зимнего периода

Рисунок 2.2 – Суточный график нагрузки летнего периода

2.1.1. Формирование вероятностной модели нагрузки

На данном этапе на основе суточных графиков определяются вероятности событий возникновения различных мощностей нагрузки. Исходя из этих вероятностей, формируется вероятностная модель в виде ряда распределения случайной величины. Случайной величиной в данном случае будет являться мощность нагрузки, возникающая на определенном участке графика нагрузки.

Ряд распределения случайной величины предполагает упорядоченное описание случайной величины в форме таблицы, где пронумерованы состояния нагрузки (номера ступеней графика нагрузки), приведены соответствующие им мощности в мегаваттах и расчетные значения вероятности этих состояний. Также ряд распределения можно привести в форме алгебраического ряда как суммы коэффициентов с индексами, показывающими соответствующую мощность.

Подсчитываются продолжительности каждой *i*-ой ступени графика $t_i(P_{\mu i})$. Для рисунка 2.3 $t_1(P_{\mu 1}) = 486$ ч; $t_2(P_{\mu 2}) = 972$ ч; $t_3(P_{\mu 3}) = 1458$ ч и т.д.

Рисунок 2.3 – Годовой график нагрузки

Статистические вероятности состояний определяем по формуле:

$$K_{H}^{P_{Hi}} = \frac{t_{i}(P_{ui})}{8760} , \qquad (2.1)$$

где i – номер интервала; $t_i(P_{ui})$ – суммарная длительность нагрузки с уровнем P_{ui} за год.

В общем виде вероятностная модель представляется рядом распределения нагрузки:

$$K_{H} = \sum_{i=1}^{N} K_{H}^{P_{Hi}} , \qquad (2.2)$$

где N – количество интервалов, соответствующих количеству разных ступеней графика нагрузок P_{Hi} .

Для упрощения расчётов воспользуемся программой MS Excel.

Для рисунка 2.3 $t_1(P_{H1}) = 486$ ч, $t_2(P_{H2}) = 972$ ч, $t_3(P_{H3}) = 1458$ ч, при $P_{H1} = 131,834$ MBT, $P_{H2} = 92,824$ MBT, $P_{H3} = 85,692$ MBT. Рассчитаем статистические вероятности данных состояний:

$$K_{H}^{131,834} = \frac{486}{8760} = 0,0555;$$

$$K_{H}^{92,284} = \frac{972}{8760} = 0,111;$$

$$K_{H}^{85,692} = \frac{1458}{8760} = 0,1664.$$

Результаты расчётов для остальных состояний нагрузки приведены в таблице 2.4.

Цамар атупаци	Mousia MDT	Количество часов	Вероятность
помер ступени	мощность, мот	в год	нагрузки, о.е.
1	26,3668	486	0,055479
2	39,5502	244	0,027854
3	52,7336	1462	0,166895
4	59,3253	244	0,027854
5	65,917	732	0,083562
6	72,5087	244	0,027854
7	79,1004	1944	0,221918
8	85,6921	1458	0,166438
9	92,2838	972	0,110959
10	131,834	486	0,055479
Всего	—	8760	1

Таблица 2.4 - Вероятность существования нагрузки в течение года

Вероятностная модель нагрузки в общем виде:

$$K_{H} = \sum_{i=1}^{10} K_{H}^{P_{Hi}} = 0,0555^{131,834} + 0,111^{92,284} + 0,1664^{85,692} + 0,222^{79,1} + 0,0279^{72,509} + 0,0836^{65,917} + 0,0279^{59,325} + 0,1669^{52,734} + 0,0279^{39,55} + 0,0555^{26,367}$$

2.1.2. Формирование вероятностной модели располагаемой мощности системы

Задачей данного этапа является формирование вероятностной модели генерирующей части энергосистемы. Для этого каждое из состояний генерирующей части, определяемой мощностью генерирующей части, должно быть представлено вероятностью его возникновения, т.е. должен быть составлен ряд распределения генерирующей части.

Каждый из генераторов может находиться лишь в двух состояниях – работоспособном или вынужденном простое. Эти два состояния образуют полную группу событий и, следовательно, $K_{\Gamma} = 1 - K_{B}$, где K_{Γ} – коэффициент готовности, K_{B} – коэффициент вынужденного простоя.

Таким образом, задача сводится к построению ряда распределения коэффициентов готовности для генераторов каждой группы. А чтобы построить ряд распределения генерирующей части энергосистемы, нужно определить вероятности состояний генерирующей части путём перемножения коэффициентов готовности генераторов каждой группы, а также привести им в соответствие мощность генерирующей части для каждого состояния.

Если в задаче примем для *i*-ой группы n_i – количество агрегатов в группе, m_i – агрегаты в вынужденном простое; $(n_i - m_i)$ – агрегаты, находящиеся в работе, P_{Ti} – номинальная мощность агрегатов *i*-ой группы, то коэффициент рабочего состояния генераторов *i*-ой группы (коэффициент готовности) описывается формулой:

$$K_{\Gamma}^{(n_{i}-m_{i})P_{\Gamma i}} = C_{n}^{m_{i}} K_{\Gamma}^{(n_{i}-m_{i})} K_{B}^{m_{i}} \quad , \tag{2.3}$$

где $(n_i - m_i)P_{Ii}$ – информационный индекс;

$$C_n^{m_i} = \frac{n_i!}{m_i!(n_i - m_i)!}$$
 – биномиальный коэффициент;

 $K_B^{m_i}$ – коэффициент вынужденного простоя m_i генераторов (m_i – показатель степени);

 $K_{\Gamma}^{(n_i-m_i)}$ – коэффициент готовности генераторов *i*-ой группы ($(n_i - m_i)$ – показатель степени).

Вероятностную модель *i*-ой группы однотипных генераторов представим в виде алгебраического ряда распределения:

 $K_{\Gamma i} = K_{\Gamma}^{n_i P_{\Gamma i}} + K_{\Gamma}^{(n_i - 1)P_{\Gamma i}} + K_{\Gamma}^{(n_i - 2)P_{\Gamma i}} + \dots + K_{\Gamma}^{(n_i - m_i)P_{\Gamma i}} + \dots + K_{\Gamma}^{(n_i - n_i)P_{\Gamma i}} \ .$

Определяем вероятность состояний генерирующей части для каждой группы генераторов.

Например, для первой группы генераторов при одном генераторе, находящемся в вынужденном простое $(n_1=2, m_1=1, (n_1-m_1)=1, C_n^{m_1}=2)$:

 $K_{\Gamma 1}^2 = C_n^{m_1} \cdot K_{\Gamma}^{(n_1 - m_1)} \cdot K_B^{m_1} = 2 \cdot 0,992^1 \cdot 0,008^1 = 0,015872$.

Аналогично расчеты проводятся для всех остальных состояний первой группы генераторов и для всех состояний второй группы генераторов.

Полученные результаты приведены в таблице 2.5.

Таблица 2.5 - Коэффициенты готовности для каждой группы

генераторов

Номер группы генераторов	п	т	n-m	C_n^m	K_{Γ}
	2	2	0	1	0,000064
1	2	1	1	2	0,015872
	2	0	2	1	0,984064
	3	3	0	1	0,000000512
2	3	2	1	3	0,000190464
	3	1	2	3	0,023617536
	3	0	3	1	0,976191488

Формируем вероятности состояний модели генерирующей части, перемножая коэффициенты готовности двух групп генераторов между собой. Результат сводим в таблицу вероятностей состояний генерирующей части энергосистемы (таблица 2.6).

Таблица 2.6 – Ряд распределения коэффициентов готовности системы

Количество		Группа 2 (30 МВт)						
включенных генераторов		3	2	1	0			
Группа 1 (33 МВт)	2	0,960635	0,023241167	0,000187429	5,03841E-07			
	1	0,015494	0,000374858	3,02304E-06	8,12646E-09			
	0	6,25E-05	1,51152E-06	1,21897E-08	3,2768E-11			

Сформируем возможные значения мощности генерирующей части. На основе вероятности состояний генерирующей части энергосистемы и значений мощности для каждого из состояний строим ряд распределения (таблица 2.7).

Количести	30	Группа 2 (30 MBт)					
включенных		2	2	1	0		
генераторов		3	2	I	U		
Группа 1 (33 МВт)	2	156	126	96	66		
	1	123	93	63	33		
	0	90	60	30	0		

Таблица 2.7 - Значение мощности генерирующей части энергосистемы

Вероятностная модель располагаемой мощности энергосистемы в общем виде:

 $K_{\Gamma} = 0,960635^{156} + 0,015494^{123} + ... + (8,12646 \cdot 10^{-09})^{33} + (3,2768 \cdot 10^{-11})^{0}$

2.1.3. Формирование вероятностной модели энергосистемы

На данном этапе необходимо сформировать модель энергосистемы путём объединения моделей нагрузки и генерирующей части. Каждое состояние энергосистемы можно охарактеризовать совпадением какоголибо состояния нагрузки с каким-либо состоянием генерирующей части.

Совпадение процессов производства и потребления во времени выразим через произведение вероятностных моделей этих процессов:

$$K_{\mathcal{P}} = K_{\Gamma} \cdot K_{H} = \left[\prod_{i=1}^{L} \sum_{m_{i}=0}^{n_{i}} K_{\Gamma}^{(n_{i}-m_{i})P_{\Gamma i}}\right] \cdot \sum_{j=1}^{N} K_{H}^{P_{H j}} , \qquad (2.4)$$

где *К*_Э, *К*_Г и *К*_Н – ряды распределений соответственно энергосистемы, генерирующей части и нагрузки;

i – индекс группы, состоящей из n_i однотипных генераторов с номинальной мощностью $P_{\Gamma i}$, $i = \overline{1, L}$;

L – количество групп однотипных генераторов;

 m_i — количество генераторов, находящихся в вынужденном простое, $m_i = \overline{0, n_i}$;

j – номер ступени графика нагрузки $P_{Hj} = \overline{1, N}$.

Полученное аналитическое выражение и есть вероятностная модель энергосистемы. Однако для практических нужд полезно разделить модель на две части: первая будет характеризовать нормальное бездефицитное состояние, а вторая – дефицитные состояния. Такое представление модели приблизит ее к практически важной задаче оценки недоотпуска электроэнергии вследствие возникновения дефицитных состояний.

Анализ будет состоять в выявлении бездефицитных и дефицитных состояний энергосистемы:

$$K_{\mathcal{F}} = K_{\mathcal{B}\mathcal{I}} + K_{\mathcal{I}} = K_{\mathcal{B}\mathcal{I}} + \sum_{i=1}^{N} K_{\mathcal{I}}^{P_{\mathcal{I}i}} , \qquad (2.5)$$

где $K_{B\mathcal{I}} = \sum_{k=1}^{G} \sum_{j=1}^{N} K_{\mathcal{I}}^{(P_{Ik} - P_{Hj})}$ – суммарная вероятность бездефицитных

состояний, соответствующих условию $(P_{Ik} - P_{Hj}) \ge 0$;

k – порядковый номер состояний генерирующей части системы, $k = \overline{1, G}$; j – номер ступени графика нагрузки P_{Hj} , $j = \overline{1, N}$;

 $K_{\mathcal{A}} = \sum_{i=1}^{G} K_{\mathcal{A}}^{P_{\mathcal{A}i}} = \sum_{k=1}^{G} \sum_{j=1}^{N} K_{\mathcal{B}}^{(P_{Tk} - P_{Hj})}$ – ряд распределения дефицитных состояний,

соответствующих условию $(P_{\Gamma k} - P_{H j}) < 0$;

і – порядковый номер учтенных уровней дефицита.

131.83		1 81705E	6 76278E	4 50852E	8 3858/F	1 67717F	2 70528E		2.08F	1.04F	0.000	0.001	0.0532
4	0.05548	-12	-10	-10	-08	-07	-08	3.47E-06	2,001-	05	86	289	95
92 283	,	3 6359E-	1 35256E	9.01704E	1 67717E	3 35434E	5 59056E	,	4 16E-	2.08E-	0.001	0.002	0 1065
8	0,11096	12	-09	-10	-07	-07	-08	6,93E-06	05	2,00E 05	719	579	91
85.692	,	5.45385E	2.02883E	1.35256E	2.51575E	5.03151E	8.38584E	,	6.24E-	3.12E-	0.002	0.003	0.1598
1	0,16644	-12	-09	-09	-07	-07	-08	1,04E-05	05	05	579	868	86
79,100		7,2718E-	2,70511E	1,80341E	3,35434E	6,70867E	1,11811E		8,32E-	4,16E-	0,003	0,005	0,2131
4	0,22192	12	-09	-09	-07	-07	-07	1,39E-05	05	05	438	158	82
72,508		9,12716E	3,3953E-	2,26354E	4,21018E	8,42035E	1,40339E		1,04E-	5,22E-	0,000	0,000	0,0267
7	0,02785	-13	10	-10	-08	-08	-08	1,74E-06	05	06	432	647	57
		2,73815E	1,01859E	6,79061E	1,26305E	2,52611E	4,21018E		3,13E-	1,57E-	0,001	0,001	0,0802
65,917	0,08356	-12	-09	-10	-07	-07	-08	5,22E-06	05	05	295	942	72
59,325		9,12716E	3,3953E-	2,26354E	4,21018E	8,42035E	1,40339E		1,04E-	5,22E-	0,000	0,000	0,0267
3	0,02785	-13	10	-10	-08	-08	-08	1,74E-06	05	06	432	647	57
52,733		5,46881E	2,0344E-	1,35627E	2,52265E	5,04531E	8,40885E		6,26E-	3,13E-	0,002	0,003	0,1603
6	0,16689	-12	09	-09	-07	-07	-08	1,04E-05	05	05	586	879	25
39,550		9,12716E	3,3953E-	2,26354E	4,21018E	8,42035E	1,40339E		1,04E-	5,22E-	0,000	0,000	0,0267
2	0,02785	-13	10	-10	-08	-08	-08	1,74E-06	05	06	432	647	57
26,366		1,81795E	6,76278E	4,50852E	8,38584E	1,67717E	2,79528E		2,08E-	1,04E-	0,000	0,001	0,0532
8	0,05547	-12	-10	-10	-08	-07	-08	3,47E-06	05	05	86	289	95
13,183		1,82543E	6,79061E	4,52707E	8,42035E	1,68407E	2,80678E		2,09E-	1,04E-	0,000	0,001	0,0535
4	0,05571	-12	-10	-10	-08	-07	-08	3,48E-06	05	05	863	295	15
Урове	Вероят												
нь											0,01	0,02	
нагруз	ность	3,2768	1,2189	8,1264	1,5115	3,0230	5,0384	6.25E-	0,00	0,000	549	324	0.96
ки		E-11	7E-08	6E-09	2E-06	4E-06	1E-07	05	0375	187	4	1	0635
	X7	L 11	712 00	01 0)	21 00	IE 00	IL 07	05	0375	107		1	0055
	у ровень												
	генераци	0	30	33	60	63	66	90	93	96	123	126	156
	И												

Таблица 2.8 – Значения вероятностей возможных состояний энергосистемы

Численные расчеты оформляем в виде двух матриц-таблиц с необходимой для анализа возможных состояний энергосистемы информацией. В первой матрице операндами будут вектор значений вероятности существования нагрузки и вектор значений вероятности генерирующей части с соответствующими им значениями мощностей нагрузки P_{Hj} и генерирующей части P_{Tk} (таблица 2.9). Для удобства эту таблицу назовём матрицей коэффициентов.

Во вторую матрицу поместим соотношения мощностей генерации *P*_{*Гk*} и нагрузки *P*_{*Hj*} в виде значений разностей (*P*_{*Γk*} – *P*_{*Hj*}). Для удобства эту таблицу назовём матрицей состояний.

131,83													
4	0,05548	-131,834	-101,834	-98,834	-71,834	-68,834	-65,834	-41,834	-38,834	-35,834	-8,834	-5,834	24,166
92,283											30,716	33,71	63,716
8	0,11096	-92,2838	-62,2838	-59,2838	-32,2838	-29,2838	-26,2838	-2,2838	0,7162	3,7162	2	62	2
85,692										10,307	37,307	40,30	70,307
1	0,16644	-85,6921	-55,6921	-52,6921	-25,6921	-22,6921	-19,6921	4,3079	7,3079	9	9	79	9
79,100										16,899	43,899	46,89	76,899
4	0,22192	-79,1004	-49,1004	-46,1004	-19,1004	-16,1004	-13,1004	10,8996	13,8996	6	6	96	6
72,508										23,491	50,491	53,49	83,491
7	0,02785	-72,5087	-42,5087	-39,5087	-12,5087	-9,5087	-6,5087	17,4913	20,4913	3	3	13	3
												60,08	
65,917	0,08356	-65,917	-35,917	-32,917	-5,917	-2,917	0,083	24,083	27,083	30,083	57,083	3	90,083
59,325										36,674	63,674	66,67	96,674
3	0,02785	-59,3253	-29,3253	-26,3253	0,6747	3,6747	6,6747	30,6747	33,6747	7	7	47	7
52,733										43,266	70,266	73,26	103,26
6	0,16689	-52,7336	-22,7336	-19,7336	7,2664	10,2664	13,2664	37,2664	40,2664	4	4	64	64
39,550										56,449	83,449	86,44	116,44
2	0,02785	-39,5502	-9,5502	-6,5502	20,4498	23,4498	26,4498	50,4498	53,4498	8	8	98	98
26,366										69,633	96,633	99,63	129,63
8	0,05547	-26,3668	3,6332	6,6332	33,6332	36,6332	39,6332	63,6332	66,6332	2	2	32	32
13,183										82,816	109,81	112,8	142,81
4	0,05571	-13,1834	16,8166	19,8166	46,8166	49,8166	52,8166	76,8166	79,8166	6	66	166	66
Урове	Вероят												
нь												0,02	
нагруз	ность	3.2768	1.2189	8.1264	1.5115	3.0230	5.0384	6.25E-	0.0003	0.000	0.01	324	0.96
ки			7E 08	6E 00	2E 06	/E 06	1E 07	05	75	187	5/0/	1	0635
	* *	L-11	/L-08	012-09	2L-00	4L-00	112-07	03	15	107	5494	1	0055
	Уровень												
	генераци	0	30	33	60	63	66	90	93	96	123	126	156
	И												

Таблица 2.9 – Значения мощности возможных состояний энергосистемы

Пример расчета:

1) матрица коэффициентов: для вырабатываемой мощности $P_{\Gamma 8} = 93$ МВт и соответствующей вероятности генерирующей части $K_{\Gamma} = 0,000375$ при мощности нагрузки $P_{H11} = 131,834$ МВт и вероятности существования нагрузки $K_{H} = 0,05548$ получим вероятность данного состояния энергосистемы $K_{2} = 2,08E-05$ путем перемножения этих вероятностей.

2) матрица состояний: при располагаемом значении мощности энергосистемы $P_{r_8} = 93$ МВт и значении мощности нагрузки $P_{H11} = 131,834$ МВт получим разность ($P_{r_8} - P_{H11}$) = -38,834 МВт. Разность отрицательна, поэтому она характеризует дефицитное состояние энергосистемы.

2.1.4. Расчет и анализ коэффициентов бездефицитной работы и готовности энергосистемы

Коэффициент бездефицитной работы определяется по вероятностной модели функционирования ЭС путем выявления состояний энергосистемы, в которых дефицит не возникает, т.е. при $(P_{Tk} - P_{Hj}) \ge 0$, и суммирования вероятностей возникновения таких состояний:

$$K_{\mathcal{B}\mathcal{I}} = \sum_{i=1}^{N} K_{\mathcal{B}\mathcal{I}i} \quad , \tag{2.6}$$

где K_{EZIi} – коэффициенты готовности для каждого бездефицитного состояния энергосистемы P_{EZIi} (в соответствии с таблицами 8 и 9).

Коэффициент готовности энергосистемы определим по формуле:

$$\alpha = \frac{\mathcal{P}_{zod} - \Delta \mathcal{P}}{\mathcal{P}_{zod}} , \qquad (2.7)$$

где Э_{год} – годовая потребность в электроэнергии;

∆Э – математическое ожидание недоотпуска электроэнергии за год вследствие дефицита мощности.

Коэффициенты мощности, для которых не выполняется условие $(P_{Tk} - P_{Hj}) \ge 0$, называют коэффициентами дефицитной работы системы. Математическое ожидание недоотпуска электроэнергии за год вследствие дефицита мощности в энергосистеме определится по формуле:

$$\Delta \mathcal{P} = 8760 \cdot \sum_{i=1}^{N} P_{\mathcal{A}i} \cdot K_{\mathcal{A}}^{P_{\mathcal{A}i}} \quad , \qquad (2.8)$$

где $K_{\mathcal{A}}^{P_{\mathcal{A}}}$ – коэффициент ряда распределения дефицитных состояний, соответствующий уровню дефицита $P_{\mathcal{A}i}$.

Пример расчета:

Коэффициента бездефицитной работы: для генерируемой мощности $P_{\Gamma 8} = 93$ МВт дефицит в системе будет существовать при мощности

нагрузки $P_{H11} = 131,834$. Соответственно, исключаем это состояние при вычислении K_{EZ} . Суммируем коэффициенты бездефицитной работы для оставшихся мощностей нагрузок при $P_{T8} = 93$ MBT.

Получается:

 $K_{E\!M} = 0,000354$

Затем вычисляем суммарный коэффициент бездефицитной работы для всех состояний энергосистемы при отсутствии в ней дефицита мощности. Получим $K_{EJIE} = 0,997805555$.

Пример расчёта величины недоотпуска: для генерируемой мощности $P_{\Gamma 5} = 93$ МВт вычисляем коэффициент дефицитной работы при мощности нагрузки $P_{H11} = 131,834$. Этим состояниям соответствуют коэффициент энергосистемы $K_{311} = K_{Д11} = 2,08$ Е-05. Рассчитываем годовой недоотпуск электроэнергии для вышеперечисленных значений P_{Γ} и P_{H} :

 $\Delta \mathcal{P} = 8760 \cdot (K_{\Pi 11} \cdot P_{\Pi 11}) = 8760 \cdot (2,08E^{-05} \cdot 38,834) = 7,07481 \,\text{MBT} \cdot \text{H}$

Определим суммарный годовой недоотпуск электроэнергии по (2.8) для всех значений соответствующих дефициту мощности в системе:

 $\Delta \Im = 144,849 \, MBt \cdot y$

Проверим, какое влияние окажет упрощенная модель располагаемой мощности системы, без учета вероятностей состояния малого порядка (меньше 10⁻⁵). Математическое ожидание недоотпуска электроэнергии за год для данного случая:

∆Э = 142,756 МВт·ч

Таким образом, очевидно незначительное влияние значений вероятности, меньших чем 10⁻⁵. Поэтому для дальнейших расчетов значения, меньшие 10⁻⁵, не учитываются.

Определим коэффициент готовности энергосистемы по (2.7):

$$\alpha = \frac{618894, 7 - 144, 849}{618894, 7} = 0,999769$$

Без учета вероятностей, меньших 10⁻⁵, коэффициент бездефицитной работы равен:

$$K_{\text{БД}\Sigma} = 0,99777$$

Сравним полученные коэффициенты с нормативными значениями:

$$\alpha = 0,999769 > 0,999;$$

 $K_{\text{EAS}} = 0,99777 > 0,996$

Полученные значения показателей надёжности больше нормативных значений. Следовательно, данная энергосистема полностью обеспечивает надежное и бесперебойное электроснабжение потребителей и не требует ввода резерва генерирующей мощности.

2.1.5. Расчет и анализ показателей надежности с учетом планово – принудительных ремонтов

При оценке надежности энергосистемы необходимо также учитывать тот факт, что в течение года количество агрегатов в системе изменяется в связи с тем, что они могут периодически выводиться в ремонт.

Соответственно, при выводе генераторов в планово-предупредительный ремонт генерируемая мощность уменьшается. Это обстоятельство может существенно повлиять на надежность работы энергосистемы, поэтому ставится задача расчета показателей надежности энергосистемы с учетом предупредительно-плановых ремонтов генераторов.

Для того чтобы решать данную задачу построим годовые графики максимальных значений мощностей нагрузки для зимнего и летнего периода, а также генерирующей части (рисунок 2.4).

Анализируя годовые графики максимальных значений мощностей нагрузки и генерирующей части (рисунок 2.4), можно заметить, что в летнее время существует заметное уменьшение потребляемой электроэнергии.

Поэтому целесообразно проводить плановые ремонты генераторов
летом, когда мощность генерации существенно превышает мощность нагрузки.

Рисунок 2.5 – Годовые графики для максимальных значений мощностей: 1 – нагрузки для летнего и зимнего периодов; 2 – повышенная нагрузка с учётом плановых ремонтов; 3 – генерация

В данной задаче для оценки надёжности энергосистемы с учётом предупредительно-плановых ремонтов необходимо рассчитать и проанализировать показатели надёжности: коэффициент готовности (*α*) системы и коэффициент бездефицитной работы (*К*_{влх}).

Поскольку часть генераторов поочередно выводятся в ремонт, то некоторые условия, необходимые при расчете показателей надежности, изменяются. В частности, изменяется генерируемая мощность в энергосистеме. Так, например, при выводе в ремонт одного генератора мощностью 30 МВт генерируемая мощность снижается со 156 МВТ до 126 МВт. С учетом продолжительности вывода в ремонт каждого генератора снижение располагаемой мощности длится в течение 2,5 месяцев.

2.1.6. Формирование вероятностной модели нагрузки

В данной энергосистеме прямой учет изменения располагаемой мощности в системе за счет вывода в плановый ремонт генераторов весьма

72

трудоёмок. Для упрощения расчетов модель реального явления возникновения недоотпуска от снижения располагаемой мощности заменим эквивалентной по результату моделью, в которой эффект от снижения величины располагаемой мощности воспроизводится соответствующим увеличением нагрузки (рисунок 2.6).

Рисунок 2.6 – Годовой график нагрузки энергосистемы с учётом ремонтов

Таким образом, расчеты проводим для четырех периодов со следующими значениями максимальной мощности нагрузки:

*P*_{и1} = 131,843 MBт – максимальная мощность нагрузки в зимний период;

 $P_{_{H2}} = 72,5087$ MBT — когда все генераторы находятся в работоспособном состоянии летом;

 $P_{_{H4}} = 102,5087$ MBT — когда генератор мощностью 30 MBT находится в ремонте;

 $P_{_{H6}} = 105,5087 \text{ MBT} -$ когда генератор мощностью 33 MBT находится в ремонте (рисунок 2.6).

Все расчеты проводятся аналогично п. 1.1-1.5

Howen errerer		Количество часов	Вероятность	
номер ступени	мощность, мвт	в год	нагрузки, о.е.	
1	131,834	486	0,055479	
2	102,5087	90	0,010274	
3	93	1242	0,141781	
4	85,6921	1458	0,166438	
5	83,87075455	90	0,010274	
6	79,1004	1944	0,221918	
7	74,55178182	360	0,041096	
8	72,5087	94	0,010731	
9	65,917	282	0,032192	
10	59,3253	94	0,010731	
11	58,029785	60	0,006849	
12	55,91383636	90	0,010274	
13	52,7336	1042	0,11895	
14	47,478915	60	0,006849	
15	42,20348	240	0,027397	
16	39,5502	94	0,010731	
17	31,65261	60	0,006849	
18	26,3668	486	0,055479	
19	18,63794545	180	0,020548	
20	13,1834	188	0,021461	
21	10,55087	120	0,013699	
Всего	-	8760	1	

Таблица 2.10 – Вероятность возникновения определенного уровня нагрузки в течение года

2.1.7. Формирование вероятностной модели располагаемой мощности системы

Затем формируем ряд распределения состояний энергосистемы и выявляем бездефицитные состояния. Генерация, по этому методу, остается неизменной (как при решении задачи без учета ППР).

Таблица 2.11 - Вероятность возникновения определенного уровня генерации в течение года

Номер группы генераторов	п	т	n-m	C_n^m	K_{Γ}
1	2	2	0	1	0,000064
	2	1	1	2	0,015872
	2	0	2	1	0,984064
2	3	3	0	1	0,000000512
	3	2	1	3	0,000190464
	3	1	2	3	0,023617536
	3	0	3	1	0,976191488

Таблица 2.12 - Ряд распределения коэффициентов готовности системы

Количество		Группа 2 (30 MBт)				
включенных		3	2	1	0	
генераторов		5	2	1	0	
Группа 1	2	0,960635	0,023241167	0,000187429	5,03841E-07	
(33 MBT)	1	0,015494	0,000374858	3,02304E-06	8,12646E-09	
	0	6,25E-05	1,51152E-06	1,21897E-08	3,2768E-11	

Таблица 2.13 - Значение мощности генерирующей части энергосистемы

Количести	30	Группа 2 (30 МВт)				
включенных		3	2	1	0	
генераторов		5	2	1	0	
Группа 1	2	156	126	96	66	
(33 MBT)	1	123	93	63	33	
	0	90	60	30	0	

2.1.8. Формирование вероятностной модели энергосистемы

Расчеты производятся аналогично пункту 1.4 и заносятся в таблицы. При этом не производится учет значений вероятностей, меньших 10⁻⁵.

	Уровень генерации	93	96	123	126	156
нагрузки	*	0,000375	0,000187	0,015494	0,023241	0,960635
Уровень	Вероятность					
10,55087	0,01369863	0	0	0,000212	0,000318	0,013159
13,1834	0,021461187	0	0	0,000333	0,000499	0,020616
18,63794545	0,020547945	0	0	0,000318	0,000478	0,019739
26,3668	0,055479452	2,08E-05	1,04E-05	0,00086	0,001289	0,053295
31,65261	0,006849315	0	0	0,000106	0,000159	0,00658
39,5502	0,010730594	0	0	0,000166	0,000249	0,010308
42,20348	0,02739726	1,03E-05	0	0,000424	0,000637	0,026319
47,478915	0,006849315	0	0	0,000106	0,000159	0,00658
52,7336	0,118949772	4,46E-05	2,23E-05	0,001843	0,002765	0,114267
55,91383636	0,010273973	0	0	0,000159	0,000239	0,00987
58,029785	0,006849315	0	0	0,000106	0,000159	0,00658
59,3253	0,010730594	0	0	0,000166	0,000249	0,010308
65,917	0,032191781	1,21E-05	0	0,000499	0,000748	0,030925
72,5087	0,010730594	0	0	0,000166	0,000249	0,010308
74,55178182	0,04109589	1,54E-05	0	0,000637	0,000955	0,039478
79,1004	0,221917808	8,32E-05	4,16E-05	0,003438	0,005158	0,213182
83,87075455	0,010273973	0	0	0,000159	0,000239	0,00987
85,6921	0,166438356	6,24E-05	3,12E-05	0,002579	0,003868	0,159886
93	0,141780822	5,31E-05	2,66E-05	0,002197	0,003295	0,1362
102,5087	0,010273973	0	0	0,000159	0,000239	0,00987
131,834	0,055479452	2,08E-05	1,04E-05	0,00086	0,001289	0,053295

Таблица 2.14 – Значения вероятностей возможных состояний энергосистемы

Таблица 2.15 – Значения возможных состояний системы

131,834	0,055479452	-38,834	-35,834	-8,834	-5,834	24,166
102,5087	0,010273973	-9,5087	-6,5087	20,4913	23,4913	53,4913
93	0,141780822	0	3	30	33	63
85,6921	0,166438356	7,3079	10,3079	37,3079	40,3079	70,3079
83,87075455	0,010273973	9,129245	12,12925	39,12925	42,12925	72,12925
79,1004	0,221917808	13,8996	16,8996	43,8996	46,8996	76,8996
74,55178182	0,04109589	18,44822	21,44822	48,44822	51,44822	81,44822
72,5087	0,010730594	20,4913	23,4913	50,4913	53,4913	83,4913
65,917	0,032191781	27,083	30,083	57,083	60,083	90,083
59,3253	0,010730594	33,6747	36,6747	63,6747	66,6747	96,6747
58,029785	0,006849315	34,97022	37,97022	64,97022	67,97022	97,97022
55,91383636	0,010273973	37,08616	40,08616	67,08616	70,08616	100,0862
52,7336	0,118949772	40,2664	43,2664	70,2664	73,2664	103,2664
47,478915	0,006849315	45,52109	48,52109	75,52109	78,52109	108,5211
42,20348	0,02739726	50,79652	53,79652	80,79652	83,79652	113,7965
39,5502	0,010730594	53,4498	56,4498	83,4498	86,4498	116,4498
31,65261	0,006849315	61,34739	64,34739	91,34739	94,34739	124,3474
26,3668	0,055479452	66,6332	69,6332	96,6332	99,6332	129,6332
18,63794545	0,020547945	74,36205	77,36205	104,3621	107,3621	137,3621
13,1834	0,021461187	79,8166	82,8166	109,8166	112,8166	142,8166
10,55087	0,01369863	82,44913	85,44913	112,4491	115,4491	145,4491
Уровень	Вероятность					
нагрузки		0,000375	0,000187	0,015494	0,023241	0,960635
	Уровень генерации	93	96	123	126	156

2.1.9. Расчет и анализ коэффициентов бездефицитной работы и готовности энергосистемы

Определим коэффициент бездефицитной работы:

$$K_{E/I\Sigma} = 0,997655$$

Определим годовую потребность в электроэнергии:

$$\Theta_{200} = \sum_{i=1}^{n} P_{\mu i} \cdot t_{\mu i} = 634851,9334 \text{ MBT-}\Psi.$$

Определим математическое ожидание недоотпуска энергии по (1.7):

Определим коэффициент готовности ЭС, используя (1.6):

$$\alpha = \frac{634851,9334 - 142,756}{634851,9334} = 0,99977.$$

Сравним полученные значения коэффициентов с нормативными значениями:

$$\alpha = 0,99977 > 0,999;$$

 $K_{\text{EAD}} = 0,997655 > 0,996.$

Полученные значения коэффициентов надежности больше нормативных значений, следовательно, система обеспечивает надежное и бесперебойное электроснабжение потребителей при учете планово-предупредительных ремонтов генераторов.

2.2. Задача схемной надежности

В данном разделе производится оценка надежности питания одного из узлов рассматриваемой схемы – подстанции Малореченская. Эта подстанция преобразует напряжение 110 кВ в напряжение 35 кВ и 10 кВ и питает отходящую нагрузку. Производится оценка надежности питания в узле 10 кВ.

Большинство элементов электроэнергетических систем (трансформаторы, линии электропередач, коммутационная аппаратура и т.д.) по классификации ГОСТ 13377-75 относятся к восстанавливаемым объектам. Основными показателями надежности таких объектов являются частота отказов и среднее время восстановления.

Частота отказов есть среднее количество отказов восстанавливаемого объекта в единицу времени. За единицу времени при оценке надежности электроэнергетических систем обычно принимают год, тогда размерность частоты отказов: $\omega = [1/год]$. Частота отказов обычно изменяется в процессе эксплуатации.

Второй показатель надежности – время восстановления (*T_B*) – есть среднее время вынужденного простоя, необходимого для поиска и устранения одного отказа.

Под дополнительными показателями надежности понимаются:

• Наработка на отказ – это среднее время наработки, или, иначе говоря, продолжительности работы элемента между отказами:

$$T_{H} = 8760 / \omega;$$

 Коэффициент готовности – это вероятность того, что элемент будет работоспособен в произвольно выбранный момент времени в промежутках между плановыми ремонтами:

$$K_{\Gamma} = \frac{T_H}{T_H + T_B} ;$$

• Коэффициент вынужденного простоя – это вероятность того, что элемент неработоспособен в произвольно выбранный момент времени

в промежутках между плановыми ремонтами, т. е. восстанавливается после отказа:

$$K_B = 1 - K_\Gamma = \frac{T_B}{T_H + T_B}.$$

Коэффициент вынужденного простоя может быть вычислен и непосредственно через основные показатели надежности.

$$K_{\scriptscriptstyle B} = \frac{T_{\scriptscriptstyle B}}{8760 \, / \, \omega + T_{\scriptscriptstyle B}}$$
, причем при $T_{\scriptscriptstyle B} \cdot \omega << 8760$, тогда : $K_{\scriptscriptstyle B} = \frac{T_{\scriptscriptstyle B} \omega}{8760}$

Для расчета схемной надежности узлов удобно использовать структурную схему надежности, составленную на основе электрической схемы сети. В данной схеме все источники питания объединяются, остальные элементы замещаются блоком с набором параметров, характеризующих надежность этого элемента. Далее путем эквивалентирования схема сворачивается до одного блока и рассчитанные параметры надежности для этого блока характеризуют схемную надежность питания нагрузки.

2.2.1. Алгоритм расчета

В результате расчета необходимо определить индекс надежности, который математически определяется следующим образом:

$$\Pi = \frac{W - \Delta W_{\Gamma O \Pi}}{W}, \ \Gamma \exists e$$

 $W = P_i \cdot t_i$ – годовая потребность в электроэнергии;

 $\Delta W_{\Gamma O I} = P_{CP} \cdot \omega_i \cdot t_{Bi}$ – величина недоотпуска: P_{CP} – среднегодовая нагрузка; ω_i , t_{Bi} – частота отказов и время восстановления эквивалентного элемента соответственно.

Для определения ω_i и t_{si} необходимо составить блок-схему и по известным формулам преобразовать ее до одного эквивалентного элемента, характеризующегося ω_i и t_{si} .

При последовательном сложении блоков суммарные показатели рассчитываются следующим образом:

$$\omega_{\Sigma} = \sum_{i} \omega_{i} ; T_{B\Sigma} = \frac{\sum_{i} (\omega_{i} \cdot T_{Bi})}{\omega_{\Sigma}} .$$

При параллельном сложении блоков суммарные показатели рассчитываются следующим образом:

$$\omega_{ij} = \frac{\omega_i \cdot \omega_j \cdot (T_{Bi} + T_{Bj})}{8760} ; \ T_{Bij} = \frac{T_{Bi} \cdot T_{Bj}}{T_{Bi} + T_{Bj}} .$$

2.2.2. Расчет показателей надежности питания узла ПС

Малореченская

Составляем таблицу исходных данных с показателями надежности элементов структурной схемы.

№ блока	Элемент	<i>w, 1/год</i>	Т,, час
1	Шины РУ 10 кВ	0,003	5
2	ТДТН – 16000/110	0,03	25
3	РУ 110 кВ	0,004	6
4	ВЛЭП 110 кВ (отказ 1-ой цепи)	0,06	4,8
5	ВЛЭП 110 кВ (отказ двух цепей)	0,01	5,8
6	ВЛЭП 110 кВ (отказ 1-ой цепи)	0,06	4,8
7	ВЛЭП 110 кВ (отказ двух цепей)	0,01	5,8
8	РУ 110 кВ (ПС Раздольное)	0,009	6
9	ВЛЭП 110 кВ (отказ 1-ой цепи)	0,96	4,8
10	ВЛЭП 110 кВ (отказ двух цепей)	0,16	5,8
11	РУ 110 кВ (ПС Чапаевка)	0,01	6
12	АТДТЦН – 63000/220	0,03	30
13	РУ 220 кВ (ПС Чапаевка)	0,01	3,5
14	ВЛЭП 220 кВ (отказ 1-ой цепи)	0,49	16
15	ВЛЭП 220 кВ (отказ двух цепей)	0,21	16
16	РУ 220 кВ (ПС Советско-Соснинская)	0,01	3,5

Таблица 2.	16 – Исходные данные	[19]	
------------	----------------------	------	--

На основе схемы электрической сети (рис. 1.1) составляем блок-схему питания узла нагрузки ПС Малореченская.

Рисунок 2.7 – Блок-схема питания узла нагрузки и ее преобразование По представленным выше соотношениям преобразуем блок-схему до одного эквивалентного блока. Преобразования представлены на рисунке 2.7, результаты расчетов показателей надежности элементов преобразованной схемы представлены в таблице 2.17. Таблица 2.17 – Показатели надежности элементов преобразованной

№ блока	Замещаемый элемент	<i>ω, 1/год</i>	Тв, час
17	16+15	0,22	15,43
18	14//14'	0,000877	8
19	10+11+12+13	0,21	9,157
20	9//9'	0,001	2,4
21	7+8	0,019	5,895
22	6//6'	0,000039	2,4
23	4//4'	0,000039	2,4
24	1+2+3	0,037	21,324
25	17+18+19+20+21+22+5+23+24	0,4878848	12,765

Для расчета индекса надежности необходимо определить значение среднегодовой нагрузки. Для этого строим годовой график нагрузки ПС Малореченская.

t, час

схемы

Рисунок 2.8 – Годовой график нагрузки ПС Малореченская По графику определяем среднегодовое значение нагрузки:

$$P_{CP} = \frac{\sum P_i \cdot t_i}{8760} = \frac{5673,0132}{8760} = 0,6476 \ (MBm \cdot u).$$

 $W = P_{cp} \cdot 8760 = 0,6476 \cdot 8760 = 5673,0132 \ (MBm \cdot vac);$

 $\Delta W_{{\scriptscriptstyle {\it FOJ}}} = P_{_{cp}} \cdot \omega_i \cdot T_{_{Bi}} = 0,6476 \cdot 0,488 \cdot 12,765 = 4,034 \ (MBm \cdot uac) \, ;$

 $\Pi = \frac{W - \Delta W_{\text{FOIL}}}{W} = \frac{5673,0132 - 4,034}{5673,0132} = 0,99929 \;.$

Сводим результаты расчета показателей надежности питания узла нагрузки ПС Малореченская в таблицу 2.18.

<i>ω</i> ,	Т _в ,	W,	P _{cp} ,	∆ <i>W_{год},</i>	П
1/год	час	МВт∙час	MBm	<i>МВт∙час</i>	
0,488	12,765	5673,0132	0,6476	4,034	0,99929

Таблица 2.18 – Показатели надежности питания ПС Малореченская

Из вышеприведенной таблицы видно, что индекс надежности питания узла нагрузки выше нормативного значения $\Pi = 0,999$. Это говорит о том, что спроектированная сеть обеспечивает достаточную надежность транзита мощности.

Вывод к главе 2

В ходе выполнения главы 2 выпускной квалификационной работы была произведена оценка надежности северной части Томской энергосистемы.

При рассмотрении задачи режимной надежности были сформированы вероятностные модели нагрузки, располагаемой мощности и энергосистемы. Оценка режимной надежности энергосистемы показала, что в исследуемой системе рассчитанные показатели надежности больше нормативных, что говорит об отсутствии необходимости введения резерва. Оценка надежности полученной модели энергосистемы с учётом планово-предупредительных ремонтов показала, что в системе имеется необходимый запас мощности, что является основанием считать энергоснабжение потребителей надежным и бесперебойным. Математическим подтверждением вышесказанного является соответствующий расчет коэффициентов надежности, которые в данном случае оказались также больше нормативных.

На втором этапе была определена надежность питания узла нагрузки, показавшая, что транзит мощности в энергосистеме и, соответственно, питание рассматриваемой подстанции Малореченская надежно.

Таким образом, можно сказать, что электроснабжение северной части Томской энергосистемы соответствует основным требованиям надежности электроснабжения.

Глава 3. Анализ возможности применения современных методов синхронизации измерений параметров режима по концам линий электропередачи

С момента начала использования электроэнергии человечеством произошло множество аварий, около 40 из которых считаются крупнейшими. В результате этих аварий оставались обесточенными города, штаты, страны и целые регионы. Причины и процессы, которые привели к столь значительным отключениям, в некоторых случаях до конца не могут быть исследованы.

Так, ярким примером является «Великий блэкаут – 2003» - сбой электросети США и Канады 14 августа 2003 года. В результате этой аварии без питания осталась треть США. При анализе процессов, приведших к лавинному снижению напряжения, группа аналитиков столкнулась со следующей проблемой: из-за отсутствия синхронизации измерительных устройств в системе невозможно судить об очередности событий (каждый аппарат фиксирует время выключения и включения, но, когда за одну событий, секунду происходит несколько десятков невозможно ориентироваться по не отстроенным друг от друга приборам). Такого рода неразрешимые ситуации привели мировую электроэнергетику к постановке задачи синхронизации в системе.

Актуальность задачи синхронизации в последние десятилетия возросла С увеличением количества используемых цифровых измерительных приборов. Сегодня уже BO многих системах фиксация параметров производится именно с помощью таких приборов. В таких системах должен производиться отсчет времени для синхронизации измерений в разных точках системы. Принято говорить о двух системах отсчета времени. О неявной системе можно говорить тогда, когда в системе отсутствуют часы и ход времени определяется процессами, протекающими в аппаратном и программном обеспечении. Этого оказывается достаточно BO многих случаях. Неявная система отсчета реализуется, к примеру, передачей сигналов, инициирующих начало отсчета времени и затем выполнение определенных действий, от одних устройств другим.

Система отсчета времени считается явной, если показания времени в ней определяются часами. Указанное необходимо для сложных систем. Таким образом осуществляется разделение процедур передачи данных о времени и данных о процессе.

Два условия должны быть учтены при настройке или синхронизации часов в отдельных устройствах. Первое – показания часов в отдельных устройствах изначально отличаются друг от друга (смещение показателей времени друг относительно друга). Второе – реальные часы не производят отсчет времени с одинаковой скоростью. Таким образом, приходится проводить постоянную корректировку хода самых неточных часов.

В связи с выявленной актуальностью заявленной темы целью последней части выпускной квалификационной работы стало исследование задачи синхронизации измерений в электроэнергетике.

Из поставленной цели были выделены следующие задачи:

- 1. Обзор литературы по существующим методам синхронизации измерений
- Выделение основных выводов и формирование рекомендаций по организации синхронизации измерений параметров режима на подстанциях северной части транзита 220 кВ Томской энергосистемы

В первой части главы 3 представлена информация по известным методам синхронизации измерений. Также в этой главе рассмотрены основные протоколы синхронизации измерений и примеры систем, в которых используются синхронизированные измерения.

Во второй части представлен анализ применимости описанных методов на подстанциях северной части транзита 220 кВ Томской энергосистемы.

Именно этот участок Томской энергосистемы является связующим звеном между ОЭС Сибири и ОЭС Урала (рис. 3.1), что предъявляет особые

86

требования по отношению к синхронизации получаемых сведений с подстанций Советско-Соснинская, Чапаевка, Раскино, Вертикос, Парабель транзита 220 кВ.

Рисунок 3.1 – Томская энергосистема

Транзит между подстанциями Парабель и Советско-Соснинская является разомкнутым в нормальном режиме. Это обусловлено тем, что при включении ОЭС Урала и ОЭС Сибири на параллельную связь может возникать нарушение устойчивости из-за превышения допустимых значений в разнице углов векторов напряжений этих энергосистем. Задача повышения надежности и устойчивости указанного транзита не теряет своей актуальности, в связи с этим производятся различные эксперименты и опыты, которые требуют точных значений, синхронизированных измерений.

Синхронизация измерений параметров режима между указанными подстанциями на протяжении всего транзита 220 кВ северной части Томской энергосистемы будет производиться одинаковым образом, поэтому анализ применимости методов рассматривается на примере линии ВР-227 (между ПС Раскино и ПС Вертикос).

Результатами работы является ряд выводов и рекомендаций по дальнейшему направлению развития вопроса синхронизации измерений в электроэнергетике, а также по применимости описанных методов к исследуемой энергосистеме.

В связи с большим количеством сокращений и терминов, используемых в главе 3, далее приведен список основных сокращений и терминов с пояснениями.

Используемые сокращения и термины в главе 3

GPS – Global Positioning System

IEEE - the Institute of Electrical and Electronics Engineers

NTP (Network Time Protocol)

PDC (Phasor Data Concentrator) – устройство для сбора данных с PMU

PMU (Phasor Measurement Unit) – прибор, измеряющий комплексные величины тока и напряжения

PTP (Precision Time Protocol)

РТРv2 – вторая редакция протокола РТР

SCADA - Supervisory for Control And Data Acquisition – это система автоматизации, контроля и управления данными

SNTP (Simple Network Time Protocol)

SPS – Special Protection System

UCTE - Union for the Coordination of Transmission of Electricity

WACS - Wide Area stability and voltage Control System

WAMS – Wide Area Measurement System

WAPS - Wide Area Protection System

Ведомые часы – внутренние часы ведомого устройства

Ведущие часы – часы, контролируемые либо радиочасами, либо GPS-

приемниками, осуществляющие синхронизацию ведомых часов

Векторные измерения – измерения комплексных величин тока и напряжения

ВОЛС – волоконно-оптические линии связи

ГЛОНАСС - Глобальная навигационная спутниковая система

Граничные часы - часы в составе устройств сети, выполняющих функцию передачи и маршрутизации данных

ИЭУ – интеллектуальные электронные устройства

КМОП – комплементарная логика на транзисторах металл- оксидполупроводниках Метка времени – параметр при обмене данными, в нем фиксируется момент снятия показаний с прибора или отправки сигнала или сообщения

МЭК 61850 – набор стандартов по системам связи внутри подстанций

РРП – регистратор режимных параметров

Сигнал PPS (Pulse Per Second) – сигнал, с помощью которого определяется время прохождения

СМПР – система мониторинга переходных режимов (система, сформированная по технологии WAMS)

Сообщение Sync – сообщение, передаваемое для целей синхронизации времени

Телеизмерения - получение информации о значениях измеряемых параметров контролируемых или управляемых объектов методами и средствами телемеханики

3.1. Современное развитие вопроса синхронизации измерений 3.1.1. Задача синхронизации измерений в электроэнергетике

Эффективность функционирования автоматизированных систем технологического управления во многом определяется качеством оценки состояния установившегося или переходного режима на основании данных телеизмерений. При ЭТОМ на качество оценки состояния режима энергосистемы существенное влияние оказывают статические И динамические погрешности телеизмерений и эффективность оценивания может быть улучшена как за счет увеличения избыточности телеизмерений, так и за счет повышения качества самих телеизмерений [14].

Под качеством телеизмерений следует понимать, прежде всего, обеспечение заданного качества обработки сигналов (быстродействие, точность измерений в заданных диапазонах контролируемых параметров и т.д.) и обеспечение требуемой синхронности измерений различными интеллектуальными электронными устройствами (ИЭУ).

Телеизмерения используются ДЛЯ оценки параметров режима энергосистемы в соответствии с используемой математической моделью В общем случае математическая модель энергосистемы энергосистемы. описывается системой нелинейных дифференциальных уравнений. Поэтому наиболее эффективная оценка режимов работы энергосистемы, в том числе и с учетом влияния электромагнитных переходных процессов, может быть получена основе использования мгновенных значений на токов И напряжений. Но последнее сопряжено с передачей больших объемов данных и вряд ли осуществимо в ближайшее время. Другой способ состоит в В ИЭУ декомпозиции входных финитные реализации сигналов на составляющие с последующей передачей информации в компактной форме. На верхнем уровне управления производится восстановление мгновенных значений токов и напряжений основной гармоники или полных значений. С учетом прогресса в развитии современных сигнальных процессоров и

91

методов цифровой обработки сигналов реализация указанных алгоритмов в ИЭУ уже не представляется неразрешимой задачей. Но при этом остро встает задача синхронизации получаемых и обрабатываемых данных.

На качестве телеизмерений сказывается использование несинхронизированных телеизмерений, т.е. телеизмерений с различными временными метками или совсем без меток времени, а также наличие статических и динамических погрешностей измерений.

Векторные синхронизированные измерения параметров режима энергосистемы используются в системах мониторинга электромеханических переходных режимов энергосистемы (по технологии Wide Area Measurement System, WAMS).

Технология векторного измерения параметров режима электроэнергетической системы впервые начала использоваться как подсистема информационного обеспечения управления режимами ЭЭС в конце 80-х годов двадцатого века. Ее появление было обусловлено рядом факторов: [8]

- усложнением топологии и структуры электроэнергетических систем, приводящим к усложнению динамических процессов, происходящих в них при технологических нарушениях;
- повышением количества и увеличением тяжести крупных системных аварий;
- появлением и внедрением технологии глобального позиционирования объектов.

Для построения WAMS используются специальные устройства PMU для синхронизированных измерений с точностью до 1 мкс и специальные программно-технические системы для сбора и обработки информации [14].

В системах такого типа информация о текущем состоянии, как отдельных объектов, так и всей энергосистемы, может быть предоставлена регистраторами электрических сигналов, синхронизированных между собой и расположенных в различных узлах энергосистемы. При этом следует обратить внимание на задачу получения синхронизированных измерений.

В электроэнергетике существуют задачи, требующие наличия регистраторов в точках подключения электрооборудования. Такими задачами являются [4,10,20]:

- контроль энергосистемы, организации схем управления и защиты;
- схема защиты по разности фазных углов с использованием синхронизированных векторов;
- автоматическое ограничение генерируемой мощности на основе синхронизированных векторных измерений;
- визуализация и принятие решений в реальном времени;
- предоставление возможности сотрудникам ОДУ быть осведомленными о ситуации в энергосистеме в целом с точки зрения устойчивости энергосистемы, что способствует принятию правильных решений даже в критических ситуациях;
- глобальный мониторинг с использованием информации об измерениях параметров векторов;
- верификация динамической модели;
- анализ аварийных ситуаций;
- мониторинг низкочастотных колебаний.
- оценивание состояния;
- мониторинг уровней устойчивости;
- мониторинг асинхронных режимов;
- противоаварийное управление;
- определение взаимных углов векторов ЭДС генераторов.
 Фазовые координаты влияют на устойчивость параллельной работы электростанций;

- определение места повреждения ЛЭП при реализации метода двухстороннего определения места повреждения;
- определение параметров режима и параметров C3
 электрооборудования, в том числе и ЛЭП.

Выполнимость этих задач основывается на получении синхронных данных измерения в точках подключения электрооборудования. От точности синхронизации регистраторов зависит точность измерений и расчётов.

На рис. 3.2 показана «технология» получения параметров режима и параметров СЗ на «входе» и «выходе» ЛЭП.

Рисунок 3.2 - Получение параметров режима и параметров СЗ ЛЭП

В системах такого типа к цифровым измерительным приборам предъявляются определенные требования по качеству обработки сигналов. Качество измерений с позиции синхронизированных измерений следует характеризовать следующими показателями: точность синхронизации и дискретность присваиваемых меток времени. При этом показатели качества обработки сигналов ИЭУ непосредственно влияют на показатели качества синхронизированных измерений параметров режима электрической сети.

Уже с появлением первых цифровых устройств, начали формироваться требования к системам передачи данных. Эти требования касались надежности, производительности и совместимости программно-аппаратных решений. Сегодня основным стандартом, содержащим все необходимые

требования, является МЭК (Международная электротехническая комиссия) 61850. [22]

С 1960-х годов делалось множество попыток создать систему, удовлетворяющую этим требованиям, но из-за технических сложностей достижение поставленных целей было затруднено.

Движение к достижению стопроцентной надежности, совместимости и гарантированной доставке данных велось не только путем модернизации компьютерных систем и систем связи, но и путем разработки новых протоколов передачи данных.

Каждый производитель строил систему на основе тех протоколов передачи данных, которые он считал наиболее подходящими для решения той или иной задачи. Использовались такие протоколы как 60870-101/103/104, Modbus, DNP3 и т. д. Разнообразие решений приводило к отсутствию совместимости и взаимозаменяемости оборудования и усложнению процесса системной интеграции.

История создания МЭК 61850 началась еще в 1980-х годах в США в Детройте. На заводах, собирающих автомобили, были установлены роботы-сборщики, управление которыми производилось по протоколу MMS (Manufacturing Message Specification). Использование этого протокола оказалось достаточно успешным, и уже в 90-х годах он лег в основу UCA2 (Utility Communication Architecture), который активно применялся в Европе в электроэнергетике.

В 2003 году появилась первая редакция стандарта МЭК 61850.

Область применения стандарта МЭК 61850 — системы связи внутри подстанции. Это набор стандартов, в который входят стандарт по одноранговой связи и связи клиент-сервер, стандарт по структуре и конфигурации подстанции, стандарт по методике испытаний, стандарт экологических требований, стандарт проекта.

Указанный стандарт определяет необходимость и техническую реализацию синхронизации измерений в электроэнергетических системах.

95

3.1.2. Методы и протоколы синхронизации измерений, состояние проблемы

3.1.2.1. Методы синхронизации измерений

Для реализации указанных выше задач и получения синхронизированных измерений обычно рассматривают три способа синхронизации регистраторов:

- Синхронизация по высокочастотным каналам связи;
- Синхронизация по каналам оптоволоконной связи;
- Синхронизация с помощью систем точной синхронизации на основе GPS и ГЛОНАСС.

Синхронизация по высокочастотным каналам связи предполагает передачу высокочастотного временного импульса каждому отдельному устройству по выделенной линии [3]. Метод проиллюстрирован на рисунке 3.3.

Рисунок 3.3 – Синхронизация по высокочастотным каналам связи Скорость передачи — до 4 Mbps.

Передача и обработка сигнала производится за счет установки высокочастотного заградителя, конденсатора связи, фильтра присоединения.

Синхронизация по каналам оптоволоконной связи (рисунок 3.4) производится путем прокладки отдельных волоконно-оптических линий и установки оборудования, преобразующего передаваемый сигнал в удобный для обработки диспетчерскими устройствами.

Рисунок 3.4 – Синхронизация по каналам оптоволоконной связи

Необходимое оборудование включает в себя волоконно-оптические приемопередатчики. Оптические приемники обнаруживают сигналы, передаваемые по волоконно - оптическому кабелю и преобразовывают его в электрические сигналы, которые затем усиливают и далее восстанавливают их форму, а также синхросигналы. Оптический передатчик в волоконно оптической системе преобразовывает электрическую последовательность данных, поставляемых КМОП (комплементарная логика на транзисторах металл-оксид-полупроводник) компонентами системы, в оптический поток данных.

Характерная скорость передачи — от 50 до 1000 Mbps.

Синхронизация с помощью систем точной синхронизации на основе GPS и ГЛОНАСС представляет собой использование радиосигналов с GPS или ГЛОНАСС спутников. Этот способ синхронизации сопровождается значительными затратами по установке и закупке оборудования, но при этом теоретически является наиболее точным.

Скорость передачи данных — высокая и может быть использована для сбора данных от PMU.

РМU (phasor measurement unit) – прибор, измеряющий комплексные величины тока и напряжения. В отличие от традиционных телеизмерений измерения от РМU синхронизированы по времени через GPS, точность их выше и поступают они в пункты сбора информации PDC (phasor data

concentrator) тысячами срезов в секунду, тогда как используемые сейчас системы SCADA принимают один срез в несколько секунд. [8]

Получение высокоточных синхронизированных измерений мгновенных значений напряжений открывает новые перспективы для решения задачи оценивания режимов ЭЭС – появляется возможность использования в качестве измеряемых параметров фаз напряжений в различных точках ЭЭС. При этом расширение состава измеряемых параметров за счет фаз напряжений полезно по следующим причинам:

- наличие дополнительных измерений увеличивает надежность системы при отказах отдельных измерительных каналов;
- возрастает обоснованность решений в процессе отбраковки измерений, содержащих грубые ошибки;
- повышается вероятность выработки правильных рекомендаций при проверке состояния топологии сети;
- наличие прямых измерений независимых переменных, к которым относятся модули и фазы напряжений узлов, повышает устойчивость вычислительного процесса\$
- более высокая точность дополнительных измерений способствует повышению точности оценки режима в целом, что приводит к повышению надежности работы ЭЭС.

Измерения, поступающие от PMU, в сочетании с телеизмерениями, пришедшими от SCADA, более полно отражают режим рабочей схемы ЭЭС. Для задачи оценивания состояния принятие в расчет измерений от PMU – это расширение спектра измерений, значения которых получены с более высокой аппаратной точностью и при этом точно увязаны по времени.

Использование РМU позволяет [7]:

- Повысить точность измерительной информации.
- Улучшить наблюдаемость расчетной схемы.
- Повысить эффективность методов обнаружения грубых ошибок в измерительной информации.

• Повысить точность и надежность получаемых оценок.

3.1.2.2. Сетевые протоколы для синхронизации внутренних часов

аппаратов

Решение об использовании методов синхронизации сопряжено с выбором и внедрением сетевого протокола для синхронизации внутренних часов отдельных устройств.

На данный момент существует два вида (не включая их модификации) протоколов [3]:

- NTP (Network Time Protocol)
- PTP (Precision Time Protocol)

Network Time Protocol - сетевой протокол для синхронизации внутренних часов компьютера с использованием сетей с переменной латентностью.

NTP использует алгоритм Марзулло (предложен Кейтом Марзулло (Keith Marzullo) из Университета Калифорнии, Сан-Диего), включая такую особенность, как учёт времени передачи. В версии 4 способен достигать точности 10 мс (1/100 с) при работе через Интернет, и до 0,2 мс (1/5000 с) и лучше внутри локальных сетей.

NTP — один из старейших используемых протоколов. NTP разработан Дэвидом Л. Миллсом (David L. Mills) из университета Дэлавера в 1985 году и в настоящее время продолжает совершенствоваться. Текущая версия — NTP 4.

NTP использует иерархическую, многоуровневую систему источников времени (рисунок 3.5). Каждый уровень этой иерархии называется слоем, каждому слою присваивается номер, начиная с 0 (ноль) в верхней части. Уровень слоя определяет расстояние от эталонных часов и существует, чтобы предотвратить циклические зависимости в иерархии. Важно отметить, что слой не является показателем качества и надежности, это значит, что источник слоя 3 может дать сигнал более высокого качества, чем некоторые источники слоя 2. В основном, слои служат для распределения нагрузки и обеспечения большей площади покрытия. Это определение слоя также отличается от понятия часовых слоёв, используемых в телекоммуникационных системах.

Рисунок 3.5 – Часовые слои в NTP (желтые стрелки обозначают аппаратное соединение, красные – сетевое соединение)

Слой О

Слой 0 - это высокоточные приборы служащие эталоном времени, такие как атомные (молекулярные, квантовые) часы, радиочасы или их аналоги. Обычно эти устройства не подключены к сети; вместо этого они подключены к локальному компьютеру (например, через интерфейс RS-232) и передают сигналы PPS (Pulse Per Second) для синхронизации.

Слой 1

Это компьютер, к которому напрямую подключены эталонные часы. Он выступает в качестве сетевого сервера времени и отвечает на NTPзапросы посылаемые компьютерами слоя 2.

Слой 2

Это компьютеры, которые получают время от серверов первого слоя, используя для этого протокол NTP. Обычно, компьютеры второго слоя обращаются к нескольким серверам первого слоя, и используя NTP- алгоритм, получают наилучший образец данных, отсеивая сервера с очевидно неверным временем. Компьютеры могут сравнивать свои данные с другими компьютерами своего слоя для получения стабильных и непротиворечивых данных на всех компьютерах слоя. Компьютеры второго слоя в свою очередь выступают в качестве серверов для компьютеров третьего слоя и отвечают на NTP-запросы.

Слой З

Компьютеры третьего слоя работают точно так же как и компьютеры второго слоя, с той лишь разницей, что серверами для них являются компьютеры вышележащего второго слоя. Они так же могут выступать в качестве серверов для нижележащего слоя. NTP (в зависимости от версии) поддерживает до 256 слоев.

Время представляется в системе NTP 64-битным числом (8 байт), состоящим из 32-битного счётчика секунд и 32-битного счётчика долей секунды, позволяя передавать время в диапазоне 232 секунд, с теоретической точностью 2–32 секунды. Поскольку шкала времени в NTP повторяется каждые 232 секунды (136 лет), получатель должен хотя бы примерно знать текущее время (с точностью 50 лет).

Наиболее широкое применение протокол NTP находит для реализации серверов точного времени. Для достижения максимальной точности предпочтительна постоянная работа программного обеспечения NTP в режиме системной службы. В семействе операционных систем Microsoft Windows — это служба W32Time.

Более простая реализация этого алгоритма известна как SNTP — простой синхронизирующий сетевой протокол. Используется во встраиваемых системах и устройствах, не требующих высокой точности, а также в пользовательских программах точного времени.

Precision Time Protocol – второй и последний на данный момент предложенный вариант.

101

В электроэнергетике протокол PTPv2 (протокол PTP версии 2) определен для синхронизации интеллектуальных электронных устройств (IED) по времени. Например, при реализации шины процесса, с передачей мгновенных значений тока и напряжения согласно стандарту МЭК 61850-9-2, требуется точная синхронизация полевых устройств по времени. Для реализации систем защиты и автоматики с использованием сети Ethernet погрешность синхронизации данных различных устройств по времени должна лежать в микросекундном диапазоне.

PTP (Precision Time Protocol) был разработан со следующими целями [3]:

- обеспечение синхронизации времени с погрешностью, не превышающей 1 микросекунды;
- предъявление минимальных требований к производительности процессоров устройств и к пропускной способности линии связи, что позволило бы сделать реализацию протокола экономически более выгодной;
- возможность использования в сетях Ethernet, а также других сетях;
- спецификация его как международного стандарта.

Вторая редакция стандарта МЭК 61850 [22] определяет использование в системах синхронизации времени протокола РТР. Детализация профиля протокола РТР для использования на объектах электроэнергетики (IEEE Standard Profile for Use of IEEE 1588 Precision Time Protocol in Power System Applications) в настоящее время осуществляется рабочей группой комитета по релейной защите и автоматике организации (PSRC) IEEE.

В системах, где используется протокол РТР, различают два вида часов: ведущие часы и ведомые часы. Ведущие часы, в идеале, контролируются либо радиочасами, либо GPS-приемниками и осуществляют синхронизацию ведомых часов. Часы в конечных устройствах, неважно, ведущие ли они или ведомые, считаются обычными часами; часы в составе устройств сети, выполняющих функцию передачи и маршрутизации данных (например, в Ethernet-коммутаторах), считаются граничными часами.

Процедура синхронизации согласно протоколу РТР подразделяется на два этапа. На первом этапе осуществляется коррекция разницы в показаниях времени между ведущими и ведомыми часами – то есть осуществляется так называемая коррекция смещения показаний времени. Для этого ведущее устройство осуществляет передачу сообщения для целей синхронизации времени Sync ведомому устройству (сообщение типа Sync). Сообщение содержит в себе текущее показание времени ведущих часов, и его передача осуществляется периодически через фиксированные интервалы времени. Однако поскольку считывание показаний ведущих часов, обработка данных и передача через контроллер Ethernet занимает некоторое время, информация в передаваемом сообщении к моменту его приема оказывается неактуальной. Одновременно с этим осуществляется как можно более точная фиксация момента времени, в который сообщение Sync уходит от отправителя, в составе которого находятся ведущие часы (ТМ1). Затем ведущее устройство осуществляет передачу зафиксированного момента времени передачи сообщения Sync ведомым устройствам (сообщение FollowUp). Те также, как можно точнее измерив момент времени приема первого сообщения (TS1), вычисляют величину, на которую необходимо выполнить коррекцию разницы в показаниях времени между собою и ведущим устройством соответственно (θ) (рисунок 3.6 и рисунок 3.7). Затем непосредственно осуществляется коррекция показаний часов в составе ведомых устройств на величину смещения. Если задержки в передаче сообщений по сети не было, то можно утверждать, что устройства синхронизированы по времени.

Рисунок 3.6 – Вычисление времени задержки в коммутаторах

Рисунок 3.7 – Пример реализации протокола РТР

На втором этапе процедуры синхронизации устройств по времени определение задержки передачи упомянутых осуществляется выше сети между устройствами. Указанное выполняется при сообщений по использовании сообщений специального Ведомое устройство типа. отправляет так называемое сообщение Delay Request (Запрос задержки передачи сообщения по сети) ведущему устройству и осуществляет фиксацию момента передачи данного сообщения. Ведущее устройство

фиксирует момент приема данного сообщения и отправляет зафиксированное значение в сообщении Delay Response (Ответное сообщение с указанием момента приема сообщения). Исходя из зафиксированных времен передачи сообщения Delay Request ведомым устройством и приема сообщения Delay Response ведущим устройством производится оценка задержки в передачи сообщения между ними по сети. Затем соответствующая коррекция показаний часов в ведомом устройстве. Однако все упомянутое выше справедливо, если характерна симметричная задержка в передаче сообщения в обоих направлениях между устройствами (то есть характерны одинаковые значения задержки передачи сообщений в обоих направлениях).

Задержка в передаче сообщения в обоих направлениях будет идентичной в том случае, если устройства соединены между собой по одной линии связи, и только. Если в сети между устройствами имеются коммутаторы или маршрутизаторы, то симметричной задержка передачи сообщения между устройствами не будет, поскольку коммутаторы в сети осуществляют сохранение тех пакетов данных, которые проходят через них, и реализуется определенная очередность их передачи. Эта особенность может в некоторых случаях, значительным образом влиять на величину задержки передачи сообщений (возможны значительные отличия BO временах передачи данных). При низкой информационной загрузке сети этот эффект оказывает малое влияние, однако при высокой информационной загрузке указанное может значительным образом повлиять на точность синхронизации времени. Для исключения больших погрешностей был предложен специальный метод и введено понятие граничных часов, которые реализуются в составе коммутаторов сети. Данные граничные часы синхронизируются по времени с часами ведущего устройства. Далее коммутатор по каждому порту является ведущим устройством для всех остальных устройств, подключенных к нему, в которых осуществляется соответствующая синхронизация внутренних часов. Таким образом, синхронизация всегда осуществляется по схеме точка-точка и характерна

105

практически одинаковая задержка в передаче сообщения в прямом и обратном направлении, а также практическая неизменность этой задержки по величине от одной передачи сообщения к другой.

Хотя принцип, основанный на использовании граничных часов, доказал свою практическую эффективность, другой механизм был определен версии протокола PTPv2 – механизм использования так во второй называемых прозрачных часов. Данный механизм предотвращает накопление погрешности, обусловленной изменением величины задержек в передаче сообщений синхронизации коммутаторами И снижение точности синхронизации в случае конфигурации сети с большим числом каскадносоединенных коммутаторов. При использовании такого механизма передача сообщений синхронизации осуществляется ОТ ведущего устройства ведомому, как и передача любого другого сообщения в сети. Однако когда сообщение синхронизации проходит через коммутатор, фиксируется задержка его передачи коммутатором. Задержка фиксируется в специальном поле коррекции в составе первого сообщения синхронизации Sync или в составе последующего сообщения FollowUp. При передаче сообщений Delay Request и Delay Response также осуществляется фиксация времени задержки их в коммутаторе.

Таким образом, реализация поддержки так называемых прозрачных часов в составе коммутаторов позволяет компенсировать задержки, возникающие непосредственно в них.

3.1.2. Примеры систем, реализующих синхронизацию внутренних часов отдельных устройств

В результате значительного технического прогресса в областях транспортной навигации, средств вычислительной техники и передачи информации возникла возможность получить в любой территориальной точке страны отсчеты астрономического времени с точностью до нескольких миллисекунд, что и позволило создать систему векторного измерения параметров ЭЭС – Wide Area Measurement System [8]. Система состоит из

измерений Phasor Measurement Unit (PMU), устройств векторных определяющих действующие значения и фазы векторов тока и напряжения, а также частоту. Эти измерения синхронизируются с помощью спутниковых Global Positioning System (GPS) систем навигации И Глобальной Навигационной Спутниковой Системы (ГЛОНАСС). Информация передается по телекоммуникационным сетям в диспетчерские центры и может дополнять информационную базу оперативно-информационного комплекса Системного оператора (ОИК). Внедрение WAMS в энергообъединении стран СНГ и Балтии (ЕЭС/ОЭС), начавшееся в 2005 году, получило название «Система мониторинга переходных режимов» (СМПР). Этому процессу способствовали две основные причины [12]:

- объективная необходимость Системного оператора Единой энергетической системы (ОАО «СО ЕЭС») в источнике информации о динамических свойствах ЕЭС/ОЭС;
- запуск проекта «Разработка ТЭО синхронного объединения энергосистем UCTE с ЕЭС/ОЭС». Создание СМПР позволило верифицировать динамическую модель ЕЭС/ОЭС перед ее объединением с моделью UCTE.

Основным элементом СМПР является регистратор режимных параметров (РРП) [10].

Регистратор предназначен для приема сигналов мгновенных значений токов и напряжений, измерений, вычислений, записи и последующей передачи полученной информации в центр управления. По измеренным мгновенным значениям токов и напряжений вычисляются и регистрируются следующие параметры:

- частота;
- угол между синусоидой напряжения сети и синусоидой 50 Гц, привязанной к сигналам точного времени;
- действующие значения активной, реактивной и полной мощности в каждой фазе и суммарной трех фаз;
- действующие значения фазных напряжений;
- время.

К системам, появление которых определил прогресс в системах передачи информации, относятся также WACS (Wide Area stability and voltage Control System) и WAPS (Wide Area Protection System).

WACS обеспечивает гибкую платформу для быстродействующего регулирования возбуждения генераторов и компенсации реактивной мощности для сохранения устойчивости в переходном режиме и желаемых уровней напряжения в крупных энергосистемах.

На рисунке 3.8 изображена схема ступенчатого и непрерывного регулирования устойчивости энергосистемы. Рисунок 3.9 иллюстрирует блок-схему реализации системы WACS. [1]

Рисунок 3.8 – Ступенчатое и непрерывное регулирование устойчивости

энергосистемы

Рисунок 3.9 – Блок-схема WACS

WACS спроектирована так, что погрешности измерений в одном или даже нескольких звеньях незначительно влияют на конечный результат. Это происходит благодаря требованиям, выдвигаемым к синхронизации этих измерений.

WAPS представляет собой систему релейной защиты энергосистем. Релейная защита электрических систем подразумевает разработку схем, которые позволят изолировать аварии, произошедшие на линии или в определенной единице оборудования либо части энергосистем, непосредственно связанных с местом аварии.

Для обнаружения и последующего принятия решений по поводу превентивных/защитных мер в таких условиях в крупных энергосистемах разрабатываются и внедряются системы, известные как SPS (Special Protection System). Эти системы принципиально отличаются от традиционных тем, что созданы для того, чтобы обеспечивать надежное энергообеспечение в незапланированных и непредвиденных условиях или когда из-за технических ограничений система не покрывает необходимые уровни нагрузки. [2]

Вывод по разделу 1

В ходе рассмотрения раздела 1 было показано, что задача синхронизации измерений параметров режима является актуальной для современных энергосистем. Этот факт влечет за собой повышенный интерес к разработкам и усовершенствованиям в этой сфере. Именно благодаря ряду прорывов в области электроэнергетики и информационных систем в некоторых странах внедряются системы нового типа, такие как WAMS и WACS.

Эти системы имеют следующие преимущества:

- повышение наблюдаемости и управляемости системы
- возможность комплексного анализа процессов
- улучшение координации измерений в реальном времени

Выделяемые преимущества позволяют говорить о новом уровне управления крупных энергосистем.

В приведенном разделе были рассмотрены основные методы и протоколы синхронизации измерений, а также примеры систем, использующих синхронизированные измерения. Для проведения анализа применимости указанных методов на подстанциях транзита 220 кВ северной части Томской энергосистемы необходимо исследование преимуществ и недостатков этих методов и их сравнение на примере использования на линии, соединяющей ПС Вертикос и ПС Раскино, которое представлено в следующем разделе.

3.2. Анализ применимости методов синхронизации измерений на подстанциях северной части транзита 220 кВ Томской энергосистемы

Анализ применимости методов синхронизации измерений в этом разделе производится на примере линии ВР-227, соединяющей ПС Вертикос и ПС Раскино, поскольку синхронизация измерений по концам других линий северной части транзита 220 кВ Томской энергосистемы будет аналогичным.

Использование временной синхронизации позволяет синхронизировать моменты времени начала и конца какого-либо процесса в сети одного или разных операторов электросвязи, например, при локализации аварии с помощью внутренней диагностики оборудования и создании записи в журнале о произошедшем событии на сервере в системе управления, соединении разговора абонентов, тарификации информационного трафика в соответствии со временем суток и месторасположением абонента в зоне обслуживания той или иной сети, наконец, проведении процедур, связанных с подтверждением приема/передачи электронной подписи, совершении трансакций и т.д.

Работы по созданию системы точного времени включают в себя [18]:

• выбор источника сигнала точного времени;

• определение способа передачи сигналов точного времени по сети связи;

• выбор сетевых протоколов и сигналов точного времени;

• определение оборудования, требующего синхронизацию по времени;

• выбор варианта решения по обеспечению различных видов оборудования сигналами точного времени.

Как известно, в Российской Федерации имеется государственный первичный эталон времени и частоты (ГЭВЧ), шкала координированного времени которого, обозначаемая как UTC (SU), принята в основу межгосударственной шкалы времени. В шкале времени UTC (SU) ведется передача эталонных сигналов времени по каналам телевидения, радио, наземным и спутниковым навигационным системам и другим каналам связи.

Из них, к числу высокоточных и наиболее доступных средств передачи сигналов времени, не требующих аренды существующих или построения дополнительных линий связи, по праву можно отнести глобальные навигационные спутниковые системы (ГНСС): российскую ГЛОНАСС и американскую GPS. Глобальность систем обеспечивается функционированием на орбитах набора видимых из любой точки Земли спутников, непрерывно передающих высокоточные сигналы, которые можно использовать в системе точного времени.

Выбор основной спутниковой системы из этих двух, при организации системы точного времени, продиктован условиями использования на сети российских операторов электросвязи источника и среды передачи сигналов времени, точного которые отвечали бы современным требованиям безопасности, надежности и целостности Единой сети электросвязи Российской Федерации (ЕСЭ РФ). В настоящее время, например, спутниковая система GPS может использоваться для синхронизации оборудования телекоммуникационных сетей российских операторов электросвязи только в качестве второго приоритета, следовательно, в качестве основного источника сигналов точного времени необходимо применять спутниковую систему ГЛОНАСС.

Выбор сетевых протоколов основывается на необходимой точности передачи информации. При сравнении протоколов NTP и PTP по этому критерию можно заметить, что значительным преимуществом обладает протокол PTP:

- погрешность передачи данных при использовании NTP несколько микросекунд;
- погрешность передачи данных при использовании РТР менее микросекунды.

Более того, протокол РТР определяется для использования в системах синхронизации времени согласно второй редакции МЭК 61850.

В рамках одного крупного объекта отдельные его части могут синхронизироваться по разным протоколам синхронизации времени, как РТР, так и NTP.

Способ передачи сигналов точного времени по сетям связи определяется рядом факторов:

- необходимой точностью;
- капитальными вложениями;
- сложностью реализации и дальнейшей эксплуатации.

Каждый метод синхронизации измерений имеет ряд преимуществ и недостатков, опираясь на которые производится выбор способа и которые представлены в таблице 3.1.

Метол синхронизации	Преимущества	Нелостатки		
Синхронизация по высокочастотным каналам связи	 используются специальные технологии устранения помех смежных каналов и исправления ошибок передачи; этот метод не предполагает введение дополнительных линий связи, что снижает капитальные затраты. 	 длительное время доставки информации 		
Синхронизация по каналам оптоволоконной связи	 малое затухание сигнала позволяет передавать информацию на значительно большее расстояние без использования усилителей; высокая пропускная способность оптического волокна позволяет передавать информацию на высокой скорости, недостижимой для других систем связи. 	 относительная хрупкость; сложность соединения при разрыве; сложность технологии изготовления; сложность преобразования сигнала (в интерфейсном оборудовании); высокие начальные инвестиции. 		
Синхронизация с помощью систем точной синхронизации на основе GPS и ГЛОНАСС	 относительно низкая стоимость аппаратуры и аренды канала; быстрое развертывание. 	 значительное время доставки информации (не менее 300-400 мс) 		

Таблица 3.1 – Преимущества и недостатки методов синхронизации

Таким образом, из таблицы 3.1 видно, что каждый из предлагаемых методов имеет ряд преимуществ и недостатков по сравнению с остальными. Так, метод синхронизации по высокочастотным каналам связи не требует прокладки дополнительных линий, что является главным достоинством. Однако оптоволоконные линии позволяют передавать информацию на дальние расстояния без установки дополнительных усилителей, что является важным фактором, когда речь идет о длинных линиях. Синхронизация на

основе спутниковых систем теоретически является наиболее точным методом, что принципиально при рассмотрении систем, требующих максимально возможную точность синхронизации измерений.

Одним из главных критериев при выборе метода синхронизации является экономический аспект, который в данной работе определяется капитальными вложениями при реализации того или иного метода. В связи с этим сравнение указанных способов при применении их к ВР-227 транзита 220 кВ, представленное в таблице 3.2, учитывает экономический фактор.

Метод	Дополнительн ое оборудование	Время доставки информа ции, мс	Капитальные вложения (без учета стоимости работ по монтажу и установки оборудования), тыс. руб.	Сложность реализации и эксплуатации	Комментари и
По высокочастот ным каналам связи	Высокочастотн ый заградитель, конденсатор связи, фильтр присоединения, передатчик типа Ака-кедр (на каждой ПС)	150 - 300	779,034 (на одну ПС) 1558,068 (на обе ПС)		Предполагае тся отсутствие необходимос ти прокладки дополнитель ных линий связи; производится установка ВЗ-630, СМАБ- 166/v3-14 УХЛ1, ФПМРс- 3200/76-1000, ВЧ АКА-16 «Кедр»
По каналам оптоволоконн ой связи	ВОЛС, приемники и передатчики сигналов, дополнительно е измерительное оборудование	100 – 150	4585,97 (с учетом монтажа и прокладки ВОЛС)	Относительная хрупкость ВОЛС, сложность соединения при разрыве	Для оценки капитальных вложений рассматривае тся кабель типа: ЭКБ- ДПОм-П- 08Е(6,0кН) облегчённый (мет.трос на 150м), ВЧ АКА-16 «Кедр»
С помощью GPS или ГЛОНАСС приемников	GPS/ГЛОНАС С - приемники	500 - 700	396,6	Установка соответствующ его оборудования на каждой подстанции; высокие затраты при реализации	ЭНИП-2- XX/X-X- A3C1E4-21 (измерение токов и напряжений), ЭНКС- 1.222.3 (устройство

Таблица 3.2 – Сравнение методов синхронизации

		согласно протоколу РТ	сбора Р информации)
		системы	T T T T
		синхронизации	I
		на объекте	В
		целом	

Таким образом, из таблицы 3.2 видно, что наиболее затратным способом синхронизации является использование каналов оптоволоконной связи, однако, этот способ является более точным и надежным по сравнению использованием каналов высокочастотной связи. Синхронизация по С высокочастотным линиям связи не требует значительных капитальных затрат по сравнению с оптоволоконными каналами, но в ходе эксплуатации предполагает денежные вложения, расходуемые на ремонт, установку ретрансляторов и т.д. Синхронизация с помощью спутниковых систем требует наименьших капиталовложений и теоретически является самым точным методом благодаря реализации по протоколу РТР, который снижает погрешность за счет учета задержки передачи сигнала, что относится к преимуществам этого метода, однако реализация этого способа предполагает протокола PTP, внедрение использование которого сопровождается значительными денежными вложениями.

Также в таблице не были учтены затраты, связанные с дальнейшим обучением и содержанием в штате персонала, специализирующегося на эксплуатации новых методов синхронизации измерений. Такие затраты составили бы незначительную сумму при рассмотрении синхронизации по линиям связи и большую сумму при анализе оставшихся методов.

Вывод к главе 3

В главе 3 была подробно рассмотрена задача синхронизации измерений в электроэнергетике на примере воздушной линии, соединяющей ПС Вертикос и ПС Раскино, которые являются частью транзита 220 кВ Парабель - Советско-Соснинская между энергосистемами ОЭС Урала и ОЭС Сибири.

Изначально были выявлены современные тенденции в развитии этого вопроса, то есть были обозначены методы и их характеристики, которые определяют применимость этих вариантов к различным объектам энергетики. Для рассмотрения были взяты следующие методы:

- Синхронизация по высокочастотным каналам связи;
- Синхронизация по каналам оптоволоконной связи;
- Синхронизация с помощью систем точной синхронизации на основе GPS и ГЛОНАСС.

выделены основные Также были преимущества И недостатки рассматриваемых методов, по результатам изучения которых можно сказать, что все методы имеют значительный перевес в одних критериях и проигрывают в других. Например, синхронизация по высокочастотным каналам связи не предполагает прокладку дополнительных линий связи, но, в время, не позволяет получать сигналы высокой точности. то же Использование ВОЛС позволяет говорить о возможности передачи сигнала на дальние расстояния (что будет ключевым при рассмотрении длинных линий) без установки дополнительного оборудования, но при этом влечет за собой проблемы по восстановлению каналов при их повреждении. Заключительный метод (синхронизация на основе спутниковых систем GPS или ГЛОНАСС) при низкой стоимости оборудования для его реализации имеет длительное время передачи сигнала, которое компенсируется при внедрении этого метода по протоколу РТР. Однако при этом реализация протокола РТР требует реструктуризацию системы сбора и обработки информации на всем объекте.

Далее был проведен анализ применимости указанных методов к подстанциям Вертикос и Раскино. Анализ производился с помощью техникоэкономических показателей таких, как капитальные вложения на стадии внедрения метода, а также техническая сложность или особые условия По результатам сравнения методов реализации. невозможно дать однозначной рекомендации по внедрению того или иного способа, поскольку выбор зависит от приоритетных критериев, выдвигаемых при решении задачи синхронизации. Так, по критерию технической сложности реализации, наиболее выгодной является синхронизация ПО высокочастотным каналам связи из-за того, что для других методов необходимо прокладка новых линий или реструктуризация системы внутри объекта. По критерию предъявляемой синхронизации данных точности, оптимальными являются методы с применением ВОЛС или спутниковых систем GPS или ГЛОНАСС, последний из которых, по предварительной оценке, также является оптимальным ПО критерию минимума капитальных вложений (без учета дальнейшего внедрения протокола синхронизации измерений РТР).

Таким образом, выбор метода синхронизации может быть сделан с помощью выделения приоритетных критериев и учета располагаемых ресурсов.

Заключение

В выпускной квалификационной работе была исследована задача синхронизации на подстанциях северной части транзита 220 кВ Томской энергосистемы.

В первой части работы были рассчитаны и введены в допустимую область по напряжению режимы работы максимальной и минимальной нагрузки, послеаварийные режимы при отключении линий, трансформаторов и автотрансформаторов. Также была оценена пропускная способность электрической сети в заданных направлениях.

По результатам расчета каждого режима были выявлены проблемные узлы, напряжения которых в последствии были введены в допустимую область отклонения от U_{жел}. Ввод параметров в допустимую область был осуществлен с помощью РПН трансформаторов и автотрансформаторов.

Во второй части ВКР была произведена оценка режимной (в том числе, с учетом планово-предупредительных ремонтов) и структурной надежности северной части Томской энергосистемы. Рассчитанные показатели надежности больше нормативных, что позволяет сделать вывод о том, что электроснабжение северной части Томской энергосистемы соответствует основным требованиям надежности электроснабжения.

В главе 3 была подробно рассмотрена задача синхронизации измерений в электроэнергетике на примере линии связи, соединяющей ПС Вертикос и ПС Раскино, которые являются частью постоянно исследуемого и, на данный момент, проблемного в качестве связи между энергосистемами ОЭС Урала и ОЭС Сибири транзита 220 кВ между подстанциями Парабель и Советско-Соснинская.

Для этого были выявлены основные современные методы синхронизации измерений и проведен анализ их применимости на ПС Раскино и ПС Вертикос. По результатам сравнения методов невозможно дать однозначной рекомендации по внедрению того или иного способа, поскольку выбор зависит от приоритетных критериев, выдвигаемых при решении задачи синхронизации. Так, ПО критерию сложности технической реализации, наиболее выгодной является синхронизация ПО высокочастотным каналам связи; по критерию предъявляемой точности, оптимальными являются методы с применением ВОЛС или спутниковых систем GPS или ГЛОНАСС, последний из которых, по предварительной оценке, также является оптимальным по критерию минимума капитальных вложений.

Результаты ВКР позволяют сделать вывод о том, что использование синхронизированных измерений режимов энергосистем предоставляет возможность комплексного анализа процессов В них, улучшение координации измерений в реальном времени и повышение надежности энергосистем. Дальнейшее развитие задачи синхронизации измерений в электроэнергетике является особо актуальным в эпоху модернизации и внедрения новых методик и методов на пути к активно-адаптивным сетям на территории всей ОЭС России.

Список использованной литературы

 Carson W. Taylor, Dennis C. Erickson, Kenneth E. Martin, Robert E. Wilson, Vaithianathan Venkatasubramanian. WACS—Wide-Area Stability and Voltage Control System: R&D and Online Demonstration // Proceedings of the IEEE, vol. 93 – 2005. - no. 5. – p.892-906

Joachim Bertsch, Cédric Carnal, Daniel Karlsson, John McDaniel, Khoi Vu.
 Wide-Area Protection and Power System Utilization // Proceedings of the IEEE,
 vol. 93 – 2005. - no. 5. – p.997-1003

Андреас Дреер. Синхронизация времени согласно стандарту IEEE 1588
 // Релейщик. – 2009 г. - №4. – С.68-71

 Базарбаев Э.А. Идентификация параметров схем замещения воздушных линий электропередачи: магистерская диссертация. – ГОУ ВПО « Национальный Исследовательский Томский Политехнический Университет», 2010

5. Буслова Н.В., Винюковский В.Н., Данисенко Г.И., Перхач В.С. Электрические системы и сети.-К.: Вища шк. Головное издательство, 1986.-584 с.

Веников В.А., Глазунов А.А., Жуков Л.А. и др. Электрические системы.
 Электрические сети: Учеб. для электроэнерг. спец. вузов/ Под ред. В.А.
 Веникова, В.А. Строева – М.: Высш. школа, 1998. – 511 с.

7. Гамм А.З., Колосок И.Н., Глазунова А.М., Гришин Ю.А., Коркина Е.С. Развитие методов оценивания состояния ЭЭС на основе новых источников данных, технологий распределенных вычислений и методов искусственного интеллекта

8. Глазунова А.М., Колосок И.Н., Коркина Е.С. Применение данных РМU при оценивании состояния ЭЭС методом контрольных уравнений. / Оперативное управление в электроэнергетике. Подготовка персонала и поддержание его квалификации, 2009.

9. Данилин В.А., Демчук А.Т., Жуков А.В., Кац П.Я. Система мониторинга запасов устойчивости энергосистемы с использованием технологии векторного измерения параметров // Современные направления развития систем релейной защиты и автоматики энергосистем. - 2009.

 Захаров Ю.П. Исследование возможности использования СМПР в оперативно-диспетчерском управлении: магистерская диссертация. - ГОУ ВПО «Уральский государственный технический университет – УПИ имени первого Президента России Б.Н.Ельцина», 2010

 Идельчик В.И. Электрические системы и сети: Учебник для ВУЗов. -М.: Энергоатомиздат, 1989.-592 с.

12. Концепция использования технологии синхронизированных по времени векторных измерений параметров электрического режима для повышения качества и надежности управления электроэнергетическими режимами и развития системы мониторинга переходных режимов в ЕЭС России.

13. Мокеев А.В. Разработка интеллектуальных электронных устройств энергосистем с использованием технологии векторных измерений // Современные направления развития систем релейной защиты и автоматики энергосистем. – 2009. – С. 416-425

14. Мокеев А.В. Совершенствование систем сбора телемеханической информации за счет обеспечения быстрых синхронизированных измерений параметров режима электрической сети. - 2008

15. Мокеев А.В., Ульянов Д.Н. Разработка интеллектуальных электронных устройств с функциями синхронизированных измерений параметров режима энергосистем // Энергия Белых ночей 2011. – 2011. - С.28-41

16. Надежность энергосистем: рабочая программа, методические указания и контрольные задания для студентов спец. 140205 «Электроэнергетические системы и сети» ИДО. Сост. К. И. Заподовников. – Томск: Изд. ТПУ, 2007. – 36 с

Правила устройства электроустановок. – СПб.: Изд-во ДЕАН, 2001. –
 928 с.

18. Прайм Тайм: серверы точного времени и синхронизации. Официальный сайт – <u>www.ptime.ru</u>

Розанов М.Н. Надежность электроэнергетических систем. М. «Энергия»,
 1974. – 176 с.: ил.

20. Сборник докладов Международной научно-технической конференции «Современные направления развития систем релейной защиты и автоматики энергосистем» - Москва, 7–10 сентября 2009. с. 141-149, с.613

21. Справочник по проектированию электрических сетей/ Под ред. Д.А. Файбисовича – М.: Изд-во ЭНАС, 2006. – 320 с.

22. Стандарт МЭК 61850. Коммуникационные сети и системы подстанций.
2 редакция. – 2011